Adding wrapper for Pose3 for reading g2o files and examples for Pose2 and Pose3 slam using g2o file
parent
5cbb9dfd6c
commit
223020ec82
|
@ -0,0 +1,85 @@
|
||||||
|
"""
|
||||||
|
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
|
||||||
|
Atlanta, Georgia 30332-0415
|
||||||
|
All Rights Reserved
|
||||||
|
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
|
||||||
|
See LICENSE for the license information
|
||||||
|
|
||||||
|
A 2D Pose SLAM example that reads input from g2o, converts it to a factor graph and does the optimization. Output is written on a file, in g2o format
|
||||||
|
|
||||||
|
Syntax for the script is "python ./Pose2SLAMExample_g2o.py input.g2o output.g2o"
|
||||||
|
"""
|
||||||
|
# pylint: disable=invalid-name, E1101
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
import gtsam
|
||||||
|
import sys
|
||||||
|
|
||||||
|
|
||||||
|
def vector3(x, y, z):
|
||||||
|
"""Create 3d double numpy array."""
|
||||||
|
return np.array([x, y, z], dtype=np.float)
|
||||||
|
|
||||||
|
kernelType = "none"
|
||||||
|
maxIterations = 100 # default
|
||||||
|
g2oFile = gtsam.findExampleDataFile("noisyToyGraph.txt") # default
|
||||||
|
|
||||||
|
if len(sys.argv) > 1:
|
||||||
|
g2ofile = str(sys.argv[1])
|
||||||
|
print ("Input file: ",g2ofile)
|
||||||
|
if len(sys.argv) > 3:
|
||||||
|
maxIterations = int(sys.argv[3])
|
||||||
|
print("Sepficied max iterations: ", maxIterations)
|
||||||
|
if len(sys.argv) > 4:
|
||||||
|
kernelType = sys.argv[4]
|
||||||
|
|
||||||
|
is3D = False # readG2o 3d parameter not available at time of this writing
|
||||||
|
|
||||||
|
if kernelType is "none":
|
||||||
|
graph, initial = gtsam.readG2o(g2oFile)
|
||||||
|
if kernelType is "huber":
|
||||||
|
print("Using robust kernel: huber - NOT CURRENTLY IMPLEMENTED IN PYTHON")
|
||||||
|
#graph, initial = gtsam.readG2o(g2oFile,is3D, KernelFunctionTypeHUBER)
|
||||||
|
if kernelType is "tukey":
|
||||||
|
print("Using robust kernel: tukey - NOT CURRENTLY IMPLEMENTED IN PYTHON")
|
||||||
|
#graph, initial = gtsam.readG2o(g2oFile,is3D, KernelFunctionTypeTUKEY)
|
||||||
|
|
||||||
|
# Add prior on the pose having index (key) = 0
|
||||||
|
graphWithPrior = graph
|
||||||
|
priorModel = gtsam.noiseModel_Diagonal.Variances(vector3(1e-6, 1e-6, 1e-8))
|
||||||
|
graphWithPrior.add(gtsam.PriorFactorPose2(0, gtsam.Pose2(), priorModel))
|
||||||
|
print("Adding prior on pose 0 ")
|
||||||
|
|
||||||
|
print("\nFactor Graph:\n{}".format(graph))
|
||||||
|
|
||||||
|
print("\nInitial Estimate:\n{}".format(initial))
|
||||||
|
|
||||||
|
params = gtsam.GaussNewtonParams()
|
||||||
|
params.setVerbosity("Termination")
|
||||||
|
|
||||||
|
if (sys.argv > 3):
|
||||||
|
params.setMaxIterations(maxIterations)
|
||||||
|
print("User setting: required to perform maximum ", maxIterations," iterations ")
|
||||||
|
|
||||||
|
#parameters.setRelativeErrorTol(1e-5)
|
||||||
|
|
||||||
|
# Create the optimizer ...
|
||||||
|
optimizer = gtsam.GaussNewtonOptimizer(graphWithPrior, initial, params)
|
||||||
|
# ... and optimize
|
||||||
|
result = optimizer.optimize()
|
||||||
|
|
||||||
|
print("Optimization complete")
|
||||||
|
print("initial error = ", graph.error(initial))
|
||||||
|
print("final error = ", graph.error(result))
|
||||||
|
|
||||||
|
if len(sys.argv) < 3:
|
||||||
|
print("Final Result:\n{}".format(result))
|
||||||
|
else:
|
||||||
|
outputFile = sys.argv[2]
|
||||||
|
print("Writing results to file: ", outputFile)
|
||||||
|
graphNoKernel, initial2 = gtsam.readG2o(g2oFile)
|
||||||
|
gtsam.writeG2o(graphNoKernel, result, outputFile)
|
||||||
|
print ("Done!")
|
|
@ -0,0 +1,56 @@
|
||||||
|
"""
|
||||||
|
* @file Pose3SLAMExample_initializePose3.cpp
|
||||||
|
* @brief A 3D Pose SLAM example that reads input from g2o, and initializes the Pose3 using InitializePose3
|
||||||
|
* Syntax for the script is ./Pose3SLAMExample_initializePose3 input.g2o output.g2o
|
||||||
|
* @date Jan 17, 2019
|
||||||
|
* @author Vikrant Shah based on CPP example by Luca Carlone
|
||||||
|
"""
|
||||||
|
# pylint: disable=invalid-name, E1101
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import math
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import gtsam
|
||||||
|
|
||||||
|
import sys
|
||||||
|
|
||||||
|
def vector6(x, y, z, a, b, c):
|
||||||
|
"""Create 6d double numpy array."""
|
||||||
|
return np.array([x, y, z, a, b, c], dtype=np.float)
|
||||||
|
|
||||||
|
if len(sys.argv) < 2:
|
||||||
|
g2oFile = gtsam.findExampleDataFile("pose3example.txt")
|
||||||
|
else:
|
||||||
|
g2oFile = str(sys.argv[1])
|
||||||
|
is3D = True
|
||||||
|
graph, initial = gtsam.readG2o(g2oFile,is3D)
|
||||||
|
|
||||||
|
# Add Prior on the first key
|
||||||
|
priorModel = gtsam.noiseModel_Diagonal.Variances(vector6(1e-6, 1e-6, 1e-6,
|
||||||
|
1e-4, 1e-4, 1e-4))
|
||||||
|
|
||||||
|
print("Adding prior to g2o file ")
|
||||||
|
graphWithPrior = graph
|
||||||
|
firstKey = initial.keys().at(0)
|
||||||
|
graphWithPrior.add(gtsam.PriorFactorPose3(firstKey, gtsam.Pose3(), priorModel))
|
||||||
|
|
||||||
|
params = gtsam.GaussNewtonParams()
|
||||||
|
params.setVerbosity("Termination") # this will show info about stopping conditions
|
||||||
|
optimizer = gtsam.GaussNewtonOptimizer(graphWithPrior, initial, params)
|
||||||
|
result = optimizer.optimize()
|
||||||
|
print("Optimization complete")
|
||||||
|
|
||||||
|
print("initial error = ",graphWithPrior.error(initial))
|
||||||
|
print("final error = ",graphWithPrior.error(result))
|
||||||
|
|
||||||
|
if len(sys.argv) < 3:
|
||||||
|
print("Final Result:\n{}".format(result))
|
||||||
|
else:
|
||||||
|
outputFile = sys.argv[2]
|
||||||
|
print("Writing results to file: ", outputFile)
|
||||||
|
graphNoKernel, initial2 = gtsam.readG2o(g2oFile,is3D)
|
||||||
|
gtsam.writeG2o(graphNoKernel, result, outputFile)
|
||||||
|
print ("Done!")
|
2
gtsam.h
2
gtsam.h
|
@ -2449,6 +2449,7 @@ virtual class EssentialMatrixFactor : gtsam::NoiseModelFactor {
|
||||||
};
|
};
|
||||||
|
|
||||||
#include <gtsam/slam/dataset.h>
|
#include <gtsam/slam/dataset.h>
|
||||||
|
string findExampleDataFile(string name);
|
||||||
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
|
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
|
||||||
gtsam::noiseModel::Diagonal* model, int maxID, bool addNoise, bool smart);
|
gtsam::noiseModel::Diagonal* model, int maxID, bool addNoise, bool smart);
|
||||||
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
|
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
|
||||||
|
@ -2465,6 +2466,7 @@ void save2D(const gtsam::NonlinearFactorGraph& graph,
|
||||||
string filename);
|
string filename);
|
||||||
|
|
||||||
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> readG2o(string filename);
|
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> readG2o(string filename);
|
||||||
|
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> readG2o(string filename, bool is3D);
|
||||||
void writeG2o(const gtsam::NonlinearFactorGraph& graph,
|
void writeG2o(const gtsam::NonlinearFactorGraph& graph,
|
||||||
const gtsam::Values& estimate, string filename);
|
const gtsam::Values& estimate, string filename);
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue