add unified projection model: a calibration class for omni-directional camera. Not test yet

release/4.3a0
jing 2014-03-09 00:40:02 -05:00
parent 639e1041c3
commit 1e76082888
2 changed files with 369 additions and 0 deletions

View File

@ -0,0 +1,201 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Cal3Unify.cpp
* @date Mar 8, 2014
* @author Jing Dong
*/
#include <gtsam/base/Vector.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Cal3Unify.h>
#include <cmath>
namespace gtsam {
/* ************************************************************************* */
Cal3Unify::Cal3Unify(const Vector &v):
xi_(v[0]), fx_(v[1]), fy_(v[2]), s_(v[3]), u0_(v[4]), v0_(v[5]), k1_(v[6]), k2_(v[7]), k3_(v[8]), k4_(v[9]){}
/* ************************************************************************* */
Matrix Cal3Unify::K() const {
return (Matrix(3, 3) << fx_, s_, u0_, 0.0, fy_, v0_, 0.0, 0.0, 1.0);
}
/* ************************************************************************* */
Vector Cal3Unify::vector() const {
return (Vector(10) << xi_, fx_, fy_, s_, u0_, v0_, k1_, k2_, k3_, k4_);
}
/* ************************************************************************* */
void Cal3Unify::print(const std::string& s) const {
gtsam::print(K(), s + ".K");
gtsam::print(Vector(k()), s + ".k");
gtsam::print(Vector(xi_), s + ".xi");
}
/* ************************************************************************* */
bool Cal3Unify::equals(const Cal3Unify& K, double tol) const {
if (fabs(fx_ - K.fx_) > tol || fabs(fy_ - K.fy_) > tol || fabs(s_ - K.s_) > tol ||
fabs(u0_ - K.u0_) > tol || fabs(v0_ - K.v0_) > tol || fabs(k1_ - K.k1_) > tol ||
fabs(k2_ - K.k2_) > tol || fabs(k3_ - K.k3_) > tol || fabs(k4_ - K.k4_) > tol ||
fabs(xi_ - K.xi_) > tol)
return false;
return true;
}
/* ************************************************************************* */
Point2 Cal3Unify::uncalibrate(const Point2& p,
boost::optional<Matrix&> H1,
boost::optional<Matrix&> H2) const {
// this part of code is modified from Cal3DS2,
// since the second part of this model (after project to normalized plane)
// is same as Cal3DS2
// parameters
const double xi = xi_, fx = fx_, fy = fy_, s = s_;
const double k1 = k1_, k2 = k2_, k3 = k3_, k4 = k4_;
// Part1: project 3D space to NPlane
const double xs = p.x(), ys = p.y(); // normalized points in 3D space
const double sqrt_nx = sqrt(xs * xs + ys * ys + 1.0);
const double xi_sqrt_nx = 1 + xi * sqrt_nx;
const double xi_sqrt_nx2 = xi_sqrt_nx * xi_sqrt_nx;
const double x = xs / xi_sqrt_nx, y = ys / xi_sqrt_nx; // points on NPlane
// Part2: project NPlane point to pixel plane: same as Cal3DS2
const double xy = x * y, xx = x * x, yy = y * y;
const double rr = xx + yy;
const double r4 = rr * rr;
const double g = 1. + k1 * rr + k2 * r4;
const double dx = 2. * k3 * xy + k4 * (rr + 2. * xx);
const double dy = 2. * k4 * xy + k3 * (rr + 2. * yy);
const double pnx = g*x + dx;
const double pny = g*y + dy;
// DDS2 will be used both in H1 and H2
Matrix DDS2;
if (H1 || H2) {
// part2
const double dr_dx = 2. * x;
const double dr_dy = 2. * y;
const double dg_dx = k1 * dr_dx + k2 * 2. * rr * dr_dx;
const double dg_dy = k1 * dr_dy + k2 * 2. * rr * dr_dy;
const double dDx_dx = 2. * k3 * y + k4 * (dr_dx + 4. * x);
const double dDx_dy = 2. * k3 * x + k4 * dr_dy;
const double dDy_dx = 2. * k4 * y + k3 * dr_dx;
const double dDy_dy = 2. * k4 * x + k3 * (dr_dy + 4. * y);
Matrix DK = (Matrix(2, 2) << fx, s_, 0.0, fy);
Matrix DR = (Matrix(2, 2) << g + x * dg_dx + dDx_dx, x * dg_dy + dDx_dy,
y * dg_dx + dDy_dx, g + y * dg_dy + dDy_dy);
DDS2 = DK * DR;
}
// Inlined derivative for calibration
if (H1) {
// part1
Matrix DU = (Matrix(2,1) << xs * sqrt_nx / xi_sqrt_nx2,
ys * sqrt_nx / xi_sqrt_nx2);
Matrix DDS2U = DDS2 * DU;
// part2
Matrix DDS2V = (Matrix(2, 9) << pnx, 0.0, pny, 1.0, 0.0, fx * x * rr + s * y * rr,
fx * x * r4 + s * y * r4, fx * 2. * xy + s * (rr + 2. * yy),
fx * (rr + 2. * xx) + s * (2. * xy), 0.0, pny, 0.0, 0.0, 1.0,
fy * y * rr, fy * y * r4, fy * (rr + 2. * yy), fy * (2. * xy));
*H1 = collect(2, &DDS2U, &DDS2V);
}
// Inlined derivative for points
if (H2) {
// part1
Matrix DU = (Matrix(2, 2) << (xi_sqrt_nx - xs * xs / sqrt_nx) / xi_sqrt_nx2,
-(ys * ys / (sqrt_nx * xi_sqrt_nx2)),
-(xs * xs / (sqrt_nx * xi_sqrt_nx2)),
(xi_sqrt_nx - ys * ys / sqrt_nx) / xi_sqrt_nx2);
*H2 = DDS2 * DU;
}
return Point2(fx * pnx + s * pny + u0_, fy * pny + v0_);
}
/* ************************************************************************* */
Point2 Cal3Unify::calibrate(const Point2& pi, const double tol) const {
// Use the following fixed point iteration to invert the radial distortion.
// pn_{t+1} = (inv(K)*pi - dp(pn_{t})) / g(pn_{t})
// point on the normalized plane, input for DS2
Point2 pnpl = this->imageToNPlane(pi);
double px = pnpl.x();
double py = pnpl.y();
const Point2 invKPi ((1 / fx_) * (px - u0_ - (s_ / fy_) * (py - v0_)),
(1 / fy_) * (py - v0_));
// initialize by ignoring the distortion at all, might be problematic for pixels around boundary
Point2 pn = invKPi;
// iterate until the uncalibrate is close to the actual pixel coordinate
const int maxIterations = 10;
int iteration;
for ( iteration = 0; iteration < maxIterations; ++iteration ) {
if ( uncalibrate(pn).distance(pi) <= tol ) break;
// part1: image -> normalized plane
pnpl = this->imageToNPlane(pn);
// part2: normalized plane -> 3D space
px = pnpl.x(), py = pnpl.y();
const double xy = px*py, xx = px*px, yy = py*py;
const double rr = xx + yy;
const double g = (1+k1_*rr+k2_*rr*rr);
const double dx = 2*k3_*xy + k4_*(rr+2*xx);
const double dy = 2*k4_*xy + k3_*(rr+2*yy);
pn = (invKPi - Point2(dx,dy))/g;
}
if ( iteration >= maxIterations )
throw std::runtime_error("Cal3DS2::calibrate fails to converge. need a better initialization");
return pn;
}
/* ************************************************************************* */
Point2 Cal3Unify::imageToNPlane(const Point2& p) const {
const double x = p.x(), y = p.y();
const double xy2 = x * x + y * y;
const double sq_xy = (xi_ + sqrt(1 + (1 - xi_ * xi_) * xy2)) / (xy2 + 1);
return Point2((sq_xy * x / (sq_xy - xi_)), (sq_xy * y / (sq_xy - xi_)));
}
/* ************************************************************************* */
Cal3Unify Cal3Unify::retract(const Vector& d) const {
return Cal3Unify(vector() + d);
}
/* ************************************************************************* */
Vector Cal3Unify::localCoordinates(const Cal3Unify& T2) const {
return T2.vector() - vector();
}
}
/* ************************************************************************* */

168
gtsam/geometry/Cal3Unify.h Normal file
View File

@ -0,0 +1,168 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Cal3Unify.h
* @brief Unified Calibration Model, see Mei07icra for details
* @date Mar 8, 2014
* @author Jing Dong
*/
/**
* @addtogroup geometry
*/
#pragma once
#include <gtsam/base/DerivedValue.h>
#include <gtsam/geometry/Point2.h>
namespace gtsam {
/**
* @brief Calibration of a omni-directional camera with mirror + lens radial distortion
* @addtogroup geometry
* \nosubgrouping
*/
class GTSAM_EXPORT Cal3Unify : public DerivedValue<Cal3Unify> {
private:
double xi_; // mirror parameter
double fx_, fy_, s_, u0_, v0_ ; // focal length, skew and principal point
double k1_, k2_ ; // radial 2nd-order and 4th-order
double k3_, k4_ ; // tangential distortion
// K = [ fx s u0 ; 0 fy v0 ; 0 0 1 ]
// Pn = [ P.x / (1 + xi * \sqrt{P.x^2 + P.y^2 + 1}), P.y / (1 + xi * \sqrt{P.x^2 + P.y^2 + 1})]
// rr = Pn.x^2 + Pn.y^2
// \hat{pn} = (1 + k1*rr + k2*rr^2 ) pn + [ 2*k3 pn.x pn.y + k4 (rr + 2 Pn.x^2) ;
// k3 (rr + 2 Pn.y^2) + 2*k4 pn.x pn.y ]
// pi = K*pn
public:
Matrix K() const ;
Eigen::Vector4d k() const { return Eigen::Vector4d(k1_, k2_, k3_, k4_); }
Vector vector() const ;
/// @name Standard Constructors
/// @{
/// Default Constructor with only unit focal length
Cal3Unify() : xi_(0), fx_(1), fy_(1), s_(0), u0_(0), v0_(0), k1_(0), k2_(0), k3_(0), k4_(0) {}
Cal3Unify(double xi, double fx, double fy, double s, double u0, double v0,
double k1, double k2, double k3 = 0.0, double k4 = 0.0) :
xi_(xi), fx_(fx), fy_(fy), s_(s), u0_(u0), v0_(v0), k1_(k1), k2_(k2), k3_(k3), k4_(k4) {}
/// @}
/// @name Advanced Constructors
/// @{
Cal3Unify(const Vector &v) ;
/// @}
/// @name Testable
/// @{
/// print with optional string
void print(const std::string& s = "") const ;
/// assert equality up to a tolerance
bool equals(const Cal3Unify& K, double tol = 10e-9) const;
/// @}
/// @name Standard Interface
/// @{
/// mirror parameter
inline double xi() const { return xi_;}
/// focal length x
inline double fx() const { return fx_;}
/// focal length y
inline double fy() const { return fy_;}
/// skew
inline double skew() const { return s_;}
/// image center in x
inline double px() const { return u0_;}
/// image center in y
inline double py() const { return v0_;}
/**
* convert intrinsic coordinates xy to image coordinates uv
* @param p point in intrinsic coordinates
* @param Dcal optional 2*9 Jacobian wrpt Cal3DS2 parameters
* @param Dp optional 2*2 Jacobian wrpt intrinsic coordinates
* @return point in image coordinates
*/
Point2 uncalibrate(const Point2& p,
boost::optional<Matrix&> Dcal = boost::none,
boost::optional<Matrix&> Dp = boost::none) const ;
/// Conver a pixel coordinate to ideal coordinate
Point2 calibrate(const Point2& p, const double tol=1e-5) const;
/// Convert a image point to normalized unit plane
Point2 imageToNPlane(const Point2& p) const;
/// @}
/// @name Manifold
/// @{
/// Given delta vector, update calibration
Cal3Unify retract(const Vector& d) const ;
/// Given a different calibration, calculate update to obtain it
Vector localCoordinates(const Cal3Unify& T2) const ;
/// Return dimensions of calibration manifold object
virtual size_t dim() const { return 10 ; } //TODO: make a final dimension variable (also, usually size_t in other classes e.g. Pose2)
/// Return dimensions of calibration manifold object
static size_t Dim() { return 10; } //TODO: make a final dimension variable
private:
/// @}
/// @name Advanced Interface
/// @{
/** Serialization function */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version)
{
ar & boost::serialization::make_nvp("Cal3Unify",
boost::serialization::base_object<Value>(*this));
ar & BOOST_SERIALIZATION_NVP(xi_);
ar & BOOST_SERIALIZATION_NVP(fx_);
ar & BOOST_SERIALIZATION_NVP(fy_);
ar & BOOST_SERIALIZATION_NVP(s_);
ar & BOOST_SERIALIZATION_NVP(u0_);
ar & BOOST_SERIALIZATION_NVP(v0_);
ar & BOOST_SERIALIZATION_NVP(k1_);
ar & BOOST_SERIALIZATION_NVP(k2_);
ar & BOOST_SERIALIZATION_NVP(k3_);
ar & BOOST_SERIALIZATION_NVP(k4_);
}
/// @}
};
}