Merge pull request #2006 from borglab/feature/k_best_fg
Search for k-best in factor graphrelease/4.3a0
commit
1daca1946d
|
|
@ -16,19 +16,35 @@
|
|||
* @author Richard Roberts
|
||||
*/
|
||||
|
||||
#include <gtsam/inference/JunctionTree-inst.h>
|
||||
#include <gtsam/discrete/DiscreteJunctionTree.h>
|
||||
#include <gtsam/discrete/DiscreteEliminationTree.h>
|
||||
#include <gtsam/discrete/DiscreteJunctionTree.h>
|
||||
#include <gtsam/inference/JunctionTree-inst.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
// Instantiate base classes
|
||||
template class EliminatableClusterTree<DiscreteBayesTree, DiscreteFactorGraph>;
|
||||
template class JunctionTree<DiscreteBayesTree, DiscreteFactorGraph>;
|
||||
// Instantiate base classes
|
||||
template class EliminatableClusterTree<DiscreteBayesTree, DiscreteFactorGraph>;
|
||||
template class JunctionTree<DiscreteBayesTree, DiscreteFactorGraph>;
|
||||
|
||||
/* ************************************************************************* */
|
||||
DiscreteJunctionTree::DiscreteJunctionTree(
|
||||
const DiscreteEliminationTree& eliminationTree) :
|
||||
Base(eliminationTree) {}
|
||||
/* ************************************************************************* */
|
||||
DiscreteJunctionTree::DiscreteJunctionTree(
|
||||
const DiscreteEliminationTree& eliminationTree)
|
||||
: Base(eliminationTree) {}
|
||||
/* ************************************************************************* */
|
||||
|
||||
void DiscreteJunctionTree::print(const std::string& s,
|
||||
const KeyFormatter& keyFormatter) const {
|
||||
auto visitor = [&keyFormatter](
|
||||
const std::shared_ptr<DiscreteJunctionTree::Cluster>& node,
|
||||
const std::string& parentString) {
|
||||
// Print the current node
|
||||
node->print(parentString + "-", keyFormatter);
|
||||
node->factors.print(parentString + "-", keyFormatter);
|
||||
std::cout << std::endl;
|
||||
return parentString + "| "; // Increment the indentation
|
||||
};
|
||||
std::string parentString = s;
|
||||
treeTraversal::DepthFirstForest(*this, parentString, visitor);
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -18,54 +18,71 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/discrete/DiscreteBayesTree.h>
|
||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||
#include <gtsam/inference/JunctionTree.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
// Forward declarations
|
||||
class DiscreteEliminationTree;
|
||||
// Forward declarations
|
||||
class DiscreteEliminationTree;
|
||||
|
||||
/**
|
||||
* An EliminatableClusterTree, i.e., a set of variable clusters with factors,
|
||||
* arranged in a tree, with the additional property that it represents the
|
||||
* clique tree associated with a Bayes net.
|
||||
*
|
||||
* In GTSAM a junction tree is an intermediate data structure in multifrontal
|
||||
* variable elimination. Each node is a cluster of factors, along with a
|
||||
* clique of variables that are eliminated all at once. In detail, every node k
|
||||
* represents a clique (maximal fully connected subset) of an associated chordal
|
||||
* graph, such as a chordal Bayes net resulting from elimination.
|
||||
*
|
||||
* The difference with the BayesTree is that a JunctionTree stores factors,
|
||||
* whereas a BayesTree stores conditionals, that are the product of eliminating
|
||||
* the factors in the corresponding JunctionTree cliques.
|
||||
*
|
||||
* The tree structure and elimination method are exactly analogous to the
|
||||
* EliminationTree, except that in the JunctionTree, at each node multiple
|
||||
* variables are eliminated at a time.
|
||||
*
|
||||
* \ingroup Multifrontal
|
||||
* @ingroup discrete
|
||||
* \nosubgrouping
|
||||
*/
|
||||
class GTSAM_EXPORT DiscreteJunctionTree
|
||||
: public JunctionTree<DiscreteBayesTree, DiscreteFactorGraph> {
|
||||
public:
|
||||
typedef JunctionTree<DiscreteBayesTree, DiscreteFactorGraph>
|
||||
Base; ///< Base class
|
||||
typedef DiscreteJunctionTree This; ///< This class
|
||||
typedef std::shared_ptr<This> shared_ptr; ///< Shared pointer to this class
|
||||
|
||||
/// @name Constructors
|
||||
/// @{
|
||||
|
||||
/**
|
||||
* An EliminatableClusterTree, i.e., a set of variable clusters with factors, arranged in a tree,
|
||||
* with the additional property that it represents the clique tree associated with a Bayes net.
|
||||
*
|
||||
* In GTSAM a junction tree is an intermediate data structure in multifrontal
|
||||
* variable elimination. Each node is a cluster of factors, along with a
|
||||
* clique of variables that are eliminated all at once. In detail, every node k represents
|
||||
* a clique (maximal fully connected subset) of an associated chordal graph, such as a
|
||||
* chordal Bayes net resulting from elimination.
|
||||
*
|
||||
* The difference with the BayesTree is that a JunctionTree stores factors, whereas a
|
||||
* BayesTree stores conditionals, that are the product of eliminating the factors in the
|
||||
* corresponding JunctionTree cliques.
|
||||
*
|
||||
* The tree structure and elimination method are exactly analogous to the EliminationTree,
|
||||
* except that in the JunctionTree, at each node multiple variables are eliminated at a time.
|
||||
*
|
||||
* \ingroup Multifrontal
|
||||
* @ingroup discrete
|
||||
* \nosubgrouping
|
||||
* Build the elimination tree of a factor graph using precomputed column
|
||||
* structure.
|
||||
* @param factorGraph The factor graph for which to build the elimination tree
|
||||
* @param structure The set of factors involving each variable. If this is
|
||||
* not precomputed, you can call the Create(const FactorGraph<DERIVEDFACTOR>&)
|
||||
* named constructor instead.
|
||||
* @return The elimination tree
|
||||
*/
|
||||
class GTSAM_EXPORT DiscreteJunctionTree :
|
||||
public JunctionTree<DiscreteBayesTree, DiscreteFactorGraph> {
|
||||
public:
|
||||
typedef JunctionTree<DiscreteBayesTree, DiscreteFactorGraph> Base; ///< Base class
|
||||
typedef DiscreteJunctionTree This; ///< This class
|
||||
typedef std::shared_ptr<This> shared_ptr; ///< Shared pointer to this class
|
||||
DiscreteJunctionTree(const DiscreteEliminationTree& eliminationTree);
|
||||
|
||||
/**
|
||||
* Build the elimination tree of a factor graph using precomputed column structure.
|
||||
* @param factorGraph The factor graph for which to build the elimination tree
|
||||
* @param structure The set of factors involving each variable. If this is not
|
||||
* precomputed, you can call the Create(const FactorGraph<DERIVEDFACTOR>&)
|
||||
* named constructor instead.
|
||||
* @return The elimination tree
|
||||
*/
|
||||
DiscreteJunctionTree(const DiscreteEliminationTree& eliminationTree);
|
||||
};
|
||||
/// @}
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
/// typedef for wrapper:
|
||||
using DiscreteCluster = DiscreteJunctionTree::Cluster;
|
||||
}
|
||||
/** Print the tree to cout */
|
||||
void print(const std::string& name = "DiscreteJunctionTree: ",
|
||||
const KeyFormatter& formatter = DefaultKeyFormatter) const;
|
||||
|
||||
/// @}
|
||||
};
|
||||
|
||||
/// typedef for wrapper:
|
||||
using DiscreteCluster = DiscreteJunctionTree::Cluster;
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -9,38 +9,37 @@
|
|||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/*
|
||||
/**
|
||||
* DiscreteSearch.cpp
|
||||
*
|
||||
* @date January, 2025
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#include <gtsam/discrete/DiscreteEliminationTree.h>
|
||||
#include <gtsam/discrete/DiscreteJunctionTree.h>
|
||||
#include <gtsam/discrete/DiscreteSearch.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
using Slot = DiscreteSearch::Slot;
|
||||
using Solution = DiscreteSearch::Solution;
|
||||
|
||||
/**
|
||||
* @brief Represents a node in the search tree for discrete search algorithms.
|
||||
*
|
||||
* @details Each SearchNode contains a partial assignment of discrete variables,
|
||||
* the current error, a bound on the final error, and the index of the next
|
||||
* conditional to be assigned.
|
||||
/*
|
||||
* A SearchNode represents a node in the search tree for the search algorithm.
|
||||
* Each SearchNode contains a partial assignment of discrete variables, the
|
||||
* current error, a bound on the final error, and the index of the next
|
||||
* slot to be assigned.
|
||||
*/
|
||||
struct SearchNode {
|
||||
DiscreteValues assignment; ///< Partial assignment of discrete variables.
|
||||
double error; ///< Current error for the partial assignment.
|
||||
double bound; ///< Lower bound on the final error for unassigned variables.
|
||||
int nextConditional; ///< Index of the next conditional to be assigned.
|
||||
DiscreteValues assignment; // Partial assignment of discrete variables.
|
||||
double error; // Current error for the partial assignment.
|
||||
double bound; // Lower bound on the final error
|
||||
std::optional<size_t> next; // Index of the next slot to be assigned.
|
||||
|
||||
/**
|
||||
* @brief Construct the root node for the search.
|
||||
*/
|
||||
static SearchNode Root(size_t numConditionals, double bound) {
|
||||
return {DiscreteValues(), 0.0, bound,
|
||||
static_cast<int>(numConditionals) - 1};
|
||||
// Construct the root node for the search.
|
||||
static SearchNode Root(size_t numSlots, double bound) {
|
||||
return {DiscreteValues(), 0.0, bound, 0};
|
||||
}
|
||||
|
||||
struct Compare {
|
||||
|
|
@ -49,40 +48,22 @@ struct SearchNode {
|
|||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Checks if the node represents a complete assignment.
|
||||
*
|
||||
* @return True if all variables have been assigned, false otherwise.
|
||||
*/
|
||||
inline bool isComplete() const { return nextConditional < 0; }
|
||||
// Checks if the node represents a complete assignment.
|
||||
inline bool isComplete() const { return !next; }
|
||||
|
||||
/**
|
||||
* @brief Expands the node by assigning the next variable.
|
||||
*
|
||||
* @param conditional The discrete conditional representing the next variable
|
||||
* to be assigned.
|
||||
* @param fa The frontal assignment for the next variable.
|
||||
* @return A new SearchNode representing the expanded state.
|
||||
*/
|
||||
SearchNode expand(const DiscreteConditional& conditional,
|
||||
const DiscreteValues& fa) const {
|
||||
// Expands the node by assigning the next variable(s).
|
||||
SearchNode expand(const DiscreteValues& fa, const Slot& slot,
|
||||
std::optional<size_t> nextSlot) const {
|
||||
// Combine the new frontal assignment with the current partial assignment
|
||||
DiscreteValues newAssignment = assignment;
|
||||
for (auto& [key, value] : fa) {
|
||||
newAssignment[key] = value;
|
||||
}
|
||||
|
||||
return {newAssignment, error + conditional.error(newAssignment), 0.0,
|
||||
nextConditional - 1};
|
||||
double errorSoFar = error + slot.factor->error(newAssignment);
|
||||
return {newAssignment, errorSoFar, errorSoFar + slot.heuristic, nextSlot};
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Prints the SearchNode to an output stream.
|
||||
*
|
||||
* @param os The output stream.
|
||||
* @param node The SearchNode to be printed.
|
||||
* @return The output stream.
|
||||
*/
|
||||
// Prints the SearchNode to an output stream.
|
||||
friend std::ostream& operator<<(std::ostream& os, const SearchNode& node) {
|
||||
os << "SearchNode(error=" << node.error << ", bound=" << node.bound << ")";
|
||||
return os;
|
||||
|
|
@ -95,17 +76,20 @@ struct CompareSolution {
|
|||
}
|
||||
};
|
||||
|
||||
// Define the Solutions class
|
||||
/*
|
||||
* A Solutions object maintains a priority queue of the best solutions found
|
||||
* during the search. The priority queue is limited to a maximum size, and
|
||||
* solutions are only added if they are better than the worst solution.
|
||||
*/
|
||||
class Solutions {
|
||||
private:
|
||||
size_t maxSize_;
|
||||
size_t maxSize_; // Maximum number of solutions to keep
|
||||
std::priority_queue<Solution, std::vector<Solution>, CompareSolution> pq_;
|
||||
|
||||
public:
|
||||
Solutions(size_t maxSize) : maxSize_(maxSize) {}
|
||||
|
||||
/// Add a solution to the priority queue, possibly evicting the worst one.
|
||||
/// Return true if we added the solution.
|
||||
// Add a solution to the priority queue, possibly evicting the worst one.
|
||||
// Return true if we added the solution.
|
||||
bool maybeAdd(double error, const DiscreteValues& assignment) {
|
||||
const bool full = pq_.size() == maxSize_;
|
||||
if (full && error >= pq_.top().error) return false;
|
||||
|
|
@ -114,7 +98,7 @@ class Solutions {
|
|||
return true;
|
||||
}
|
||||
|
||||
/// Check if we have any solutions
|
||||
// Check if we have any solutions
|
||||
bool empty() const { return pq_.empty(); }
|
||||
|
||||
// Method to print all solutions
|
||||
|
|
@ -128,9 +112,9 @@ class Solutions {
|
|||
return os;
|
||||
}
|
||||
|
||||
/// Check if (partial) solution with given bound can be pruned. If we have
|
||||
/// room, we never prune. Otherwise, prune if lower bound on error is worse
|
||||
/// than our current worst error.
|
||||
// Check if (partial) solution with given bound can be pruned. If we have
|
||||
// room, we never prune. Otherwise, prune if lower bound on error is worse
|
||||
// than our current worst error.
|
||||
bool prune(double bound) const {
|
||||
if (pq_.size() < maxSize_) return false;
|
||||
return bound >= pq_.top().error;
|
||||
|
|
@ -150,97 +134,155 @@ class Solutions {
|
|||
}
|
||||
};
|
||||
|
||||
// Get the factor associated with a node, possibly product of factors.
|
||||
template <typename NodeType>
|
||||
static DiscreteFactor::shared_ptr getFactor(const NodeType& node) {
|
||||
const auto& factors = node->factors;
|
||||
return factors.size() == 1 ? factors.back()
|
||||
: DiscreteFactorGraph(factors).product();
|
||||
}
|
||||
|
||||
DiscreteSearch::DiscreteSearch(const DiscreteEliminationTree& etree) {
|
||||
using NodePtr = std::shared_ptr<DiscreteEliminationTree::Node>;
|
||||
auto visitor = [this](const NodePtr& node, int data) {
|
||||
const DiscreteFactor::shared_ptr factor = getFactor(node);
|
||||
const size_t cardinality = factor->cardinality(node->key);
|
||||
std::vector<std::pair<Key, size_t>> pairs{{node->key, cardinality}};
|
||||
const Slot slot{factor, DiscreteValues::CartesianProduct(pairs), 0.0};
|
||||
slots_.emplace_back(std::move(slot));
|
||||
return data + 1;
|
||||
};
|
||||
|
||||
int data = 0; // unused
|
||||
treeTraversal::DepthFirstForest(etree, data, visitor);
|
||||
lowerBound_ = computeHeuristic();
|
||||
}
|
||||
|
||||
DiscreteSearch::DiscreteSearch(const DiscreteJunctionTree& junctionTree) {
|
||||
using NodePtr = std::shared_ptr<DiscreteJunctionTree::Cluster>;
|
||||
auto visitor = [this](const NodePtr& cluster, int data) {
|
||||
const auto factor = getFactor(cluster);
|
||||
std::vector<std::pair<Key, size_t>> pairs;
|
||||
for (Key key : cluster->orderedFrontalKeys) {
|
||||
pairs.emplace_back(key, factor->cardinality(key));
|
||||
}
|
||||
const Slot slot{factor, DiscreteValues::CartesianProduct(pairs), 0.0};
|
||||
slots_.emplace_back(std::move(slot));
|
||||
return data + 1;
|
||||
};
|
||||
|
||||
int data = 0; // unused
|
||||
treeTraversal::DepthFirstForest(junctionTree, data, visitor);
|
||||
lowerBound_ = computeHeuristic();
|
||||
}
|
||||
|
||||
DiscreteSearch DiscreteSearch::FromFactorGraph(
|
||||
const DiscreteFactorGraph& factorGraph, const Ordering& ordering,
|
||||
bool buildJunctionTree) {
|
||||
const DiscreteEliminationTree etree(factorGraph, ordering);
|
||||
if (buildJunctionTree) {
|
||||
const DiscreteJunctionTree junctionTree(etree);
|
||||
return DiscreteSearch(junctionTree);
|
||||
} else {
|
||||
return DiscreteSearch(etree);
|
||||
}
|
||||
}
|
||||
|
||||
DiscreteSearch::DiscreteSearch(const DiscreteBayesNet& bayesNet) {
|
||||
std::vector<DiscreteConditional::shared_ptr> conditionals;
|
||||
for (auto& factor : bayesNet) conditionals_.push_back(factor);
|
||||
costToGo_ = computeCostToGo(conditionals_);
|
||||
slots_.reserve(bayesNet.size());
|
||||
for (auto& conditional : bayesNet) {
|
||||
const Slot slot{conditional, conditional->frontalAssignments(), 0.0};
|
||||
slots_.emplace_back(std::move(slot));
|
||||
}
|
||||
std::reverse(slots_.begin(), slots_.end());
|
||||
lowerBound_ = computeHeuristic();
|
||||
}
|
||||
|
||||
DiscreteSearch::DiscreteSearch(const DiscreteBayesTree& bayesTree) {
|
||||
std::function<void(const DiscreteBayesTree::sharedClique&)>
|
||||
collectConditionals = [&](const auto& clique) {
|
||||
if (!clique) return;
|
||||
for (const auto& child : clique->children) collectConditionals(child);
|
||||
conditionals_.push_back(clique->conditional());
|
||||
};
|
||||
for (const auto& root : bayesTree.roots()) collectConditionals(root);
|
||||
costToGo_ = computeCostToGo(conditionals_);
|
||||
using NodePtr = DiscreteBayesTree::sharedClique;
|
||||
auto visitor = [this](const NodePtr& clique, int data) {
|
||||
auto conditional = clique->conditional();
|
||||
const Slot slot{conditional, conditional->frontalAssignments(), 0.0};
|
||||
slots_.emplace_back(std::move(slot));
|
||||
return data + 1;
|
||||
};
|
||||
|
||||
int data = 0; // unused
|
||||
treeTraversal::DepthFirstForest(bayesTree, data, visitor);
|
||||
lowerBound_ = computeHeuristic();
|
||||
}
|
||||
|
||||
struct SearchNodeQueue
|
||||
: public std::priority_queue<SearchNode, std::vector<SearchNode>,
|
||||
SearchNode::Compare> {
|
||||
void expandNextNode(
|
||||
const std::vector<DiscreteConditional::shared_ptr>& conditionals,
|
||||
const std::vector<double>& costToGo, Solutions* solutions) {
|
||||
void DiscreteSearch::print(const std::string& name,
|
||||
const KeyFormatter& formatter) const {
|
||||
std::cout << name << " with " << slots_.size() << " slots:\n";
|
||||
for (size_t i = 0; i < slots_.size(); ++i) {
|
||||
std::cout << i << ": " << slots_[i] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
using SearchNodeQueue = std::priority_queue<SearchNode, std::vector<SearchNode>,
|
||||
SearchNode::Compare>;
|
||||
|
||||
std::vector<Solution> DiscreteSearch::run(size_t K) const {
|
||||
if (slots_.empty()) {
|
||||
return {Solution(0.0, DiscreteValues())};
|
||||
}
|
||||
|
||||
Solutions solutions(K);
|
||||
SearchNodeQueue expansions;
|
||||
expansions.push(SearchNode::Root(slots_.size(), lowerBound_));
|
||||
|
||||
// Perform the search
|
||||
while (!expansions.empty()) {
|
||||
// Pop the partial assignment with the smallest bound
|
||||
SearchNode current = top();
|
||||
pop();
|
||||
SearchNode current = expansions.top();
|
||||
expansions.pop();
|
||||
|
||||
// If we already have K solutions, prune if we cannot beat the worst one.
|
||||
if (solutions->prune(current.bound)) {
|
||||
return;
|
||||
if (solutions.prune(current.bound)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Check if we have a complete assignment
|
||||
if (current.isComplete()) {
|
||||
solutions->maybeAdd(current.error, current.assignment);
|
||||
return;
|
||||
solutions.maybeAdd(current.error, current.assignment);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Expand on the next factor
|
||||
const auto& conditional = conditionals[current.nextConditional];
|
||||
|
||||
for (auto& fa : conditional->frontalAssignments()) {
|
||||
auto childNode = current.expand(*conditional, fa);
|
||||
if (childNode.nextConditional >= 0)
|
||||
childNode.bound = childNode.error + costToGo[childNode.nextConditional];
|
||||
// Get the next slot to expand
|
||||
const auto& slot = slots_[*current.next];
|
||||
std::optional<size_t> nextSlot = *current.next + 1;
|
||||
if (nextSlot == slots_.size()) nextSlot.reset();
|
||||
for (auto& fa : slot.assignments) {
|
||||
auto childNode = current.expand(fa, slot, nextSlot);
|
||||
|
||||
// Again, prune if we cannot beat the worst solution
|
||||
if (!solutions->prune(childNode.bound)) {
|
||||
emplace(childNode);
|
||||
if (!solutions.prune(childNode.bound)) {
|
||||
expansions.emplace(childNode);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
std::vector<Solution> DiscreteSearch::run(size_t K) const {
|
||||
Solutions solutions(K);
|
||||
SearchNodeQueue expansions;
|
||||
expansions.push(SearchNode::Root(conditionals_.size(),
|
||||
costToGo_.empty() ? 0.0 : costToGo_.back()));
|
||||
|
||||
#ifdef DISCRETE_SEARCH_DEBUG
|
||||
size_t numExpansions = 0;
|
||||
#endif
|
||||
|
||||
// Perform the search
|
||||
while (!expansions.empty()) {
|
||||
expansions.expandNextNode(conditionals_, costToGo_, &solutions);
|
||||
#ifdef DISCRETE_SEARCH_DEBUG
|
||||
++numExpansions;
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef DISCRETE_SEARCH_DEBUG
|
||||
std::cout << "Number of expansions: " << numExpansions << std::endl;
|
||||
#endif
|
||||
|
||||
// Extract solutions from bestSolutions in ascending order of error
|
||||
return solutions.extractSolutions();
|
||||
}
|
||||
|
||||
std::vector<double> DiscreteSearch::computeCostToGo(
|
||||
const std::vector<DiscreteConditional::shared_ptr>& conditionals) {
|
||||
std::vector<double> costToGo;
|
||||
/*
|
||||
* We have a number of factors, each with a max value, and we want to compute
|
||||
* a lower-bound on the cost-to-go for each slot, *not* including this factor.
|
||||
* For the last slot[n-1], this is 0.0, as the cost after that is zero.
|
||||
* For the second-to-last slot, it is h = -log(max(factor[n-1])), because after
|
||||
* we assign slot[n-2] we still need to assign slot[n-1], which will cost *at
|
||||
* least* h. We return the estimated lower bound of the cost for *all* slots.
|
||||
*/
|
||||
double DiscreteSearch::computeHeuristic() {
|
||||
double error = 0.0;
|
||||
for (const auto& conditional : conditionals) {
|
||||
Ordering ordering(conditional->begin(), conditional->end());
|
||||
auto maxx = conditional->max(ordering);
|
||||
for (auto it = slots_.rbegin(); it != slots_.rend(); ++it) {
|
||||
it->heuristic = error;
|
||||
Ordering ordering(it->factor->begin(), it->factor->end());
|
||||
auto maxx = it->factor->max(ordering);
|
||||
error -= std::log(maxx->evaluate({}));
|
||||
costToGo.push_back(error);
|
||||
}
|
||||
return costToGo;
|
||||
return error;
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -9,8 +9,12 @@
|
|||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/*
|
||||
* DiscreteSearch.cpp
|
||||
/**
|
||||
* @file DiscreteSearch.h
|
||||
* @brief Defines the DiscreteSearch class for discrete search algorithms.
|
||||
*
|
||||
* @details This file contains the definition of the DiscreteSearch class, which
|
||||
* is used in discrete search algorithms to find the K best solutions.
|
||||
*
|
||||
* @date January, 2025
|
||||
* @author Frank Dellaert
|
||||
|
|
@ -24,12 +28,53 @@
|
|||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* DiscreteSearch: Search for the K best solutions.
|
||||
* @brief DiscreteSearch: Search for the K best solutions.
|
||||
*
|
||||
* This class is used to search for the K best solutions in a DiscreteBayesNet.
|
||||
* This is implemented with a modified A* search algorithm that uses a priority
|
||||
* queue to manage the search nodes. That machinery is defined in the .cpp file.
|
||||
* The heuristic we use is the sum of the log-probabilities of the
|
||||
* maximum-probability assignments for each slot, for all slots to the right of
|
||||
* the current slot.
|
||||
*
|
||||
* TODO: The heuristic could be refined by using the partial assignment in
|
||||
* search node to refine the max-probability assignment for the remaining slots.
|
||||
* This would incur more computation but will lead to fewer expansions.
|
||||
*/
|
||||
class GTSAM_EXPORT DiscreteSearch {
|
||||
public:
|
||||
/**
|
||||
* @brief A solution to a discrete search problem.
|
||||
* We structure the search as a set of slots, each with a factor and
|
||||
* a set of variable assignments that need to be chosen. In addition, each
|
||||
* slot has a heuristic associated with it.
|
||||
*
|
||||
* Example:
|
||||
* The factors in the search problem (always parents before descendents!):
|
||||
* [P(A), P(B|A), P(C|A,B)]
|
||||
* The assignments for each factor.
|
||||
* [[A0,A1], [B0,B1], [C0,C1,C2]]
|
||||
* A lower bound on the cost-to-go after each slot, e.g.,
|
||||
* [-log(max_B P(B|A)) -log(max_C P(C|A,B)), -log(max_C P(C|A,B)), 0.0]
|
||||
* Note that these decrease as we move from right to left.
|
||||
* We keep the global lower bound as lowerBound_. In the example, it is:
|
||||
* -log(max_B P(B|A)) -log(max_C P(C|A,B)) -log(max_C P(C|A,B))
|
||||
*/
|
||||
struct Slot {
|
||||
DiscreteFactor::shared_ptr factor;
|
||||
std::vector<DiscreteValues> assignments;
|
||||
double heuristic;
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const Slot& slot) {
|
||||
os << "Slot with " << slot.assignments.size()
|
||||
<< " assignments, heuristic=" << slot.heuristic;
|
||||
os << ", factor:\n" << slot.factor->markdown() << std::endl;
|
||||
return os;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* A solution is a set of assignments, covering all the slots.
|
||||
* as well as an associated error = -log(probability)
|
||||
*/
|
||||
struct Solution {
|
||||
double error;
|
||||
|
|
@ -42,16 +87,56 @@ class GTSAM_EXPORT DiscreteSearch {
|
|||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Construct from a DiscreteBayesNet and K.
|
||||
*/
|
||||
DiscreteSearch(const DiscreteBayesNet& bayesNet);
|
||||
public:
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
/**
|
||||
* Construct from a DiscreteBayesTree and K.
|
||||
* Construct from a DiscreteFactorGraph.
|
||||
*
|
||||
* Internally creates either an elimination tree or a junction tree. The
|
||||
* latter incurs more up-front computation but the search itself might be
|
||||
* faster. Then again, for the elimination tree, the heuristic will be more
|
||||
* fine-grained (more slots).
|
||||
*
|
||||
* @param factorGraph The factor graph to search over.
|
||||
* @param ordering The ordering used to create etree (and maybe jtree).
|
||||
* @param buildJunctionTree Whether to build a junction tree or not.
|
||||
*/
|
||||
static DiscreteSearch FromFactorGraph(const DiscreteFactorGraph& factorGraph,
|
||||
const Ordering& ordering,
|
||||
bool buildJunctionTree = false);
|
||||
|
||||
/// Construct from a DiscreteEliminationTree.
|
||||
DiscreteSearch(const DiscreteEliminationTree& etree);
|
||||
|
||||
/// Construct from a DiscreteJunctionTree.
|
||||
DiscreteSearch(const DiscreteJunctionTree& junctionTree);
|
||||
|
||||
//// Construct from a DiscreteBayesNet.
|
||||
DiscreteSearch(const DiscreteBayesNet& bayesNet);
|
||||
|
||||
/// Construct from a DiscreteBayesTree.
|
||||
DiscreteSearch(const DiscreteBayesTree& bayesTree);
|
||||
|
||||
/// @}
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
/** Print the tree to cout */
|
||||
void print(const std::string& name = "DiscreteSearch: ",
|
||||
const KeyFormatter& formatter = DefaultKeyFormatter) const;
|
||||
|
||||
/// @}
|
||||
/// @name Standard API
|
||||
/// @{
|
||||
|
||||
/// Return lower bound on the cost-to-go for the entire search
|
||||
double lowerBound() const { return lowerBound_; }
|
||||
|
||||
/// Read access to the slots
|
||||
const std::vector<Slot>& slots() const { return slots_; }
|
||||
|
||||
/**
|
||||
* @brief Search for the K best solutions.
|
||||
*
|
||||
|
|
@ -64,15 +149,16 @@ class GTSAM_EXPORT DiscreteSearch {
|
|||
*/
|
||||
std::vector<Solution> run(size_t K = 1) const;
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
/// Compute the cumulative cost-to-go for each conditional slot.
|
||||
static std::vector<double> computeCostToGo(
|
||||
const std::vector<DiscreteConditional::shared_ptr>& conditionals);
|
||||
/**
|
||||
* Compute the cumulative lower-bound cost-to-go after each slot is filled.
|
||||
* @return the estimated lower bound of the cost for *all* slots.
|
||||
*/
|
||||
double computeHeuristic();
|
||||
|
||||
/// Expand the next node in the search tree.
|
||||
void expandNextNode() const;
|
||||
|
||||
std::vector<DiscreteConditional::shared_ptr> conditionals_;
|
||||
std::vector<double> costToGo_;
|
||||
double lowerBound_; ///< Lower bound on the cost-to-go for the entire search.
|
||||
std::vector<Slot> slots_; ///< The slots to fill in the search.
|
||||
};
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -58,4 +58,4 @@ DiscreteBayesNet createAsiaExample() {
|
|||
return asia;
|
||||
}
|
||||
} // namespace asia_example
|
||||
} // namespace gtsam
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -28,9 +28,15 @@ using namespace gtsam;
|
|||
namespace asia {
|
||||
using namespace asia_example;
|
||||
static const DiscreteBayesNet bayesNet = createAsiaExample();
|
||||
|
||||
// Create factor graph and optimize with max-product for MPE
|
||||
static const DiscreteFactorGraph factorGraph(bayesNet);
|
||||
static const DiscreteValues mpe = factorGraph.optimize();
|
||||
|
||||
// Create ordering
|
||||
static const Ordering ordering{D, X, B, E, L, T, S, A};
|
||||
|
||||
// Create Bayes tree
|
||||
static const DiscreteBayesTree bayesTree =
|
||||
*factorGraph.eliminateMultifrontal(ordering);
|
||||
} // namespace asia
|
||||
|
|
@ -45,29 +51,6 @@ TEST(DiscreteBayesNet, EmptyKBest) {
|
|||
EXPECT_DOUBLES_EQUAL(0, std::fabs(solutions[0].error), 1e-9);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(DiscreteBayesNet, AsiaKBest) {
|
||||
const DiscreteSearch search(asia::bayesNet);
|
||||
|
||||
// Ask for the MPE
|
||||
auto mpe = search.run();
|
||||
|
||||
EXPECT_LONGS_EQUAL(1, mpe.size());
|
||||
// Regression test: check the MPE solution
|
||||
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(mpe[0].error), 1e-5);
|
||||
|
||||
// Check it is equal to MPE via inference
|
||||
EXPECT(assert_equal(asia::mpe, mpe[0].assignment));
|
||||
|
||||
// Ask for top 4 solutions
|
||||
auto solutions = search.run(4);
|
||||
|
||||
EXPECT_LONGS_EQUAL(4, solutions.size());
|
||||
// Regression test: check the first and last solution
|
||||
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(solutions[0].error), 1e-5);
|
||||
EXPECT_DOUBLES_EQUAL(2.201708, std::fabs(solutions[3].error), 1e-5);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(DiscreteBayesTree, EmptyTree) {
|
||||
DiscreteBayesTree bt;
|
||||
|
|
@ -81,26 +64,45 @@ TEST(DiscreteBayesTree, EmptyTree) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(DiscreteBayesTree, AsiaTreeKBest) {
|
||||
DiscreteSearch search(asia::bayesTree);
|
||||
TEST(DiscreteBayesNet, AsiaKBest) {
|
||||
auto fromETree =
|
||||
DiscreteSearch::FromFactorGraph(asia::factorGraph, asia::ordering);
|
||||
auto fromJunctionTree =
|
||||
DiscreteSearch::FromFactorGraph(asia::factorGraph, asia::ordering, true);
|
||||
const DiscreteSearch fromBayesNet(asia::bayesNet);
|
||||
const DiscreteSearch fromBayesTree(asia::bayesTree);
|
||||
|
||||
// Ask for MPE
|
||||
auto mpe = search.run();
|
||||
for (auto& search :
|
||||
{fromETree, fromJunctionTree, fromBayesNet, fromBayesTree}) {
|
||||
// Ask for the MPE
|
||||
auto mpe = search.run();
|
||||
|
||||
EXPECT_LONGS_EQUAL(1, mpe.size());
|
||||
// Regression test: check the MPE solution
|
||||
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(mpe[0].error), 1e-5);
|
||||
// Regression on error lower bound
|
||||
EXPECT_DOUBLES_EQUAL(1.205536, search.lowerBound(), 1e-5);
|
||||
|
||||
// Check it is equal to MPE via inference
|
||||
EXPECT(assert_equal(asia::mpe, mpe[0].assignment));
|
||||
// Check that the cost-to-go heuristic decreases from there
|
||||
auto slots = search.slots();
|
||||
double previousHeuristic = search.lowerBound();
|
||||
for (auto&& slot : slots) {
|
||||
EXPECT(slot.heuristic <= previousHeuristic);
|
||||
previousHeuristic = slot.heuristic;
|
||||
}
|
||||
|
||||
// Ask for top 4 solutions
|
||||
auto solutions = search.run(4);
|
||||
EXPECT_LONGS_EQUAL(1, mpe.size());
|
||||
// Regression test: check the MPE solution
|
||||
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(mpe[0].error), 1e-5);
|
||||
|
||||
EXPECT_LONGS_EQUAL(4, solutions.size());
|
||||
// Regression test: check the first and last solution
|
||||
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(solutions[0].error), 1e-5);
|
||||
EXPECT_DOUBLES_EQUAL(2.201708, std::fabs(solutions[3].error), 1e-5);
|
||||
// Check it is equal to MPE via inference
|
||||
EXPECT(assert_equal(asia::mpe, mpe[0].assignment));
|
||||
|
||||
// Ask for top 4 solutions
|
||||
auto solutions = search.run(4);
|
||||
|
||||
EXPECT_LONGS_EQUAL(4, solutions.size());
|
||||
// Regression test: check the first and last solution
|
||||
EXPECT_DOUBLES_EQUAL(1.236627, std::fabs(solutions[0].error), 1e-5);
|
||||
EXPECT_DOUBLES_EQUAL(2.201708, std::fabs(solutions[3].error), 1e-5);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
Loading…
Reference in New Issue