remove HybridLookupDAG
parent
129fa68627
commit
1b5daf9a0e
|
@ -1,76 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file DiscreteLookupDAG.cpp
|
||||
* @date Aug, 2022
|
||||
* @author Shangjie Xue
|
||||
*/
|
||||
|
||||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/discrete/DiscreteLookupDAG.h>
|
||||
#include <gtsam/discrete/DiscreteValues.h>
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridConditional.h>
|
||||
#include <gtsam/hybrid/HybridLookupDAG.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
using std::pair;
|
||||
using std::vector;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************** */
|
||||
void HybridLookupTable::argmaxInPlace(HybridValues* values) const {
|
||||
// For discrete conditional, uses argmaxInPlace() method in
|
||||
// DiscreteLookupTable.
|
||||
if (isDiscrete()) {
|
||||
boost::static_pointer_cast<DiscreteLookupTable>(inner_)->argmaxInPlace(
|
||||
&(values->discrete));
|
||||
} else if (isContinuous()) {
|
||||
// For Gaussian conditional, uses solve() method in GaussianConditional.
|
||||
values->continuous.insert(
|
||||
boost::static_pointer_cast<GaussianConditional>(inner_)->solve(
|
||||
values->continuous));
|
||||
} else if (isHybrid()) {
|
||||
// For hybrid conditional, since children should not contain discrete
|
||||
// variable, we can condition on the discrete variable in the parents and
|
||||
// solve the resulting GaussianConditional.
|
||||
auto conditional =
|
||||
boost::static_pointer_cast<GaussianMixture>(inner_)->conditionals()(
|
||||
values->discrete);
|
||||
values->continuous.insert(conditional->solve(values->continuous));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************** */
|
||||
HybridLookupDAG HybridLookupDAG::FromBayesNet(const HybridBayesNet& bayesNet) {
|
||||
HybridLookupDAG dag;
|
||||
for (auto&& conditional : bayesNet) {
|
||||
HybridLookupTable hlt(*conditional);
|
||||
dag.push_back(hlt);
|
||||
}
|
||||
return dag;
|
||||
}
|
||||
|
||||
/* ************************************************************************** */
|
||||
HybridValues HybridLookupDAG::argmax(HybridValues result) const {
|
||||
// Argmax each node in turn in topological sort order (parents first).
|
||||
for (auto lookupTable : boost::adaptors::reverse(*this))
|
||||
lookupTable->argmaxInPlace(&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
|
@ -1,119 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file HybridLookupDAG.h
|
||||
* @date Aug, 2022
|
||||
* @author Shangjie Xue
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/discrete/DiscreteDistribution.h>
|
||||
#include <gtsam/discrete/DiscreteLookupDAG.h>
|
||||
#include <gtsam/hybrid/HybridConditional.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/BayesNet.h>
|
||||
#include <gtsam/inference/FactorGraph.h>
|
||||
|
||||
#include <boost/shared_ptr.hpp>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* @brief HybridLookupTable table for max-product
|
||||
*
|
||||
* Similar to DiscreteLookupTable, inherits from hybrid conditional for
|
||||
* convenience. Is used in the max-product algorithm.
|
||||
*/
|
||||
class GTSAM_EXPORT HybridLookupTable : public HybridConditional {
|
||||
public:
|
||||
using Base = HybridConditional;
|
||||
using This = HybridLookupTable;
|
||||
using shared_ptr = boost::shared_ptr<This>;
|
||||
using BaseConditional = Conditional<DecisionTreeFactor, This>;
|
||||
|
||||
/**
|
||||
* @brief Construct a new Hybrid Lookup Table object form a HybridConditional.
|
||||
*
|
||||
* @param conditional input hybrid conditional
|
||||
*/
|
||||
HybridLookupTable(HybridConditional& conditional) : Base(conditional){};
|
||||
|
||||
/**
|
||||
* @brief Calculate assignment for frontal variables that maximizes value.
|
||||
* @param (in/out) parentsValues Known assignments for the parents.
|
||||
*/
|
||||
void argmaxInPlace(HybridValues* parentsValues) const;
|
||||
};
|
||||
|
||||
/** A DAG made from hybrid lookup tables, as defined above. Similar to
|
||||
* DiscreteLookupDAG */
|
||||
class GTSAM_EXPORT HybridLookupDAG : public BayesNet<HybridLookupTable> {
|
||||
public:
|
||||
using Base = BayesNet<HybridLookupTable>;
|
||||
using This = HybridLookupDAG;
|
||||
using shared_ptr = boost::shared_ptr<This>;
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
/// Construct empty DAG.
|
||||
HybridLookupDAG() {}
|
||||
|
||||
/// Create from BayesNet with LookupTables
|
||||
static HybridLookupDAG FromBayesNet(const HybridBayesNet& bayesNet);
|
||||
|
||||
/// Destructor
|
||||
virtual ~HybridLookupDAG() {}
|
||||
|
||||
/// @}
|
||||
|
||||
/// @name Standard Interface
|
||||
/// @{
|
||||
|
||||
/** Add a DiscreteLookupTable */
|
||||
template <typename... Args>
|
||||
void add(Args&&... args) {
|
||||
emplace_shared<HybridLookupTable>(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief argmax by back-substitution, optionally given certain variables.
|
||||
*
|
||||
* Assumes the DAG is reverse topologically sorted, i.e. last
|
||||
* conditional will be optimized first *and* that the
|
||||
* DAG does not contain any conditionals for the given variables. If the DAG
|
||||
* resulted from eliminating a factor graph, this is true for the elimination
|
||||
* ordering.
|
||||
*
|
||||
* @return given assignment extended w. optimal assignment for all variables.
|
||||
*/
|
||||
HybridValues argmax(HybridValues given = HybridValues()) const;
|
||||
/// @}
|
||||
|
||||
private:
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template <class ARCHIVE>
|
||||
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
|
||||
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
}
|
||||
};
|
||||
|
||||
// traits
|
||||
template <>
|
||||
struct traits<HybridLookupDAG> : public Testable<HybridLookupDAG> {};
|
||||
|
||||
} // namespace gtsam
|
|
@ -1,272 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testHybridLookupDAG.cpp
|
||||
* @date Aug, 2022
|
||||
* @author Shangjie Xue
|
||||
*/
|
||||
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/discrete/Assignment.h>
|
||||
#include <gtsam/discrete/DecisionTreeFactor.h>
|
||||
#include <gtsam/discrete/DiscreteKey.h>
|
||||
#include <gtsam/discrete/DiscreteValues.h>
|
||||
#include <gtsam/hybrid/GaussianMixture.h>
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridLookupDAG.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/GaussianConditional.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using noiseModel::Isotropic;
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
TEST(HybridLookupTable, basics) {
|
||||
// create a conditional gaussian node
|
||||
Matrix S1(2, 2);
|
||||
S1(0, 0) = 1;
|
||||
S1(1, 0) = 2;
|
||||
S1(0, 1) = 3;
|
||||
S1(1, 1) = 4;
|
||||
|
||||
Matrix S2(2, 2);
|
||||
S2(0, 0) = 6;
|
||||
S2(1, 0) = 0.2;
|
||||
S2(0, 1) = 8;
|
||||
S2(1, 1) = 0.4;
|
||||
|
||||
Matrix R1(2, 2);
|
||||
R1(0, 0) = 0.1;
|
||||
R1(1, 0) = 0.3;
|
||||
R1(0, 1) = 0.0;
|
||||
R1(1, 1) = 0.34;
|
||||
|
||||
Matrix R2(2, 2);
|
||||
R2(0, 0) = 0.1;
|
||||
R2(1, 0) = 0.3;
|
||||
R2(0, 1) = 0.0;
|
||||
R2(1, 1) = 0.34;
|
||||
|
||||
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector2(1.0, 0.34));
|
||||
|
||||
Vector2 d1(0.2, 0.5), d2(0.5, 0.2);
|
||||
|
||||
auto conditional0 = boost::make_shared<GaussianConditional>(X(1), d1, R1,
|
||||
X(2), S1, model),
|
||||
conditional1 = boost::make_shared<GaussianConditional>(X(1), d2, R2,
|
||||
X(2), S2, model);
|
||||
|
||||
// Create decision tree
|
||||
DiscreteKey m1(1, 2);
|
||||
GaussianMixture::Conditionals conditionals(
|
||||
{m1},
|
||||
vector<GaussianConditional::shared_ptr>{conditional0, conditional1});
|
||||
// GaussianMixture mixtureFactor2({X(1)}, {X(2)}, {m1}, conditionals);
|
||||
|
||||
boost::shared_ptr<GaussianMixture> mixtureFactor(
|
||||
new GaussianMixture({X(1)}, {X(2)}, {m1}, conditionals));
|
||||
|
||||
HybridConditional hc(mixtureFactor);
|
||||
|
||||
GaussianMixture::Conditionals conditional2 =
|
||||
boost::static_pointer_cast<GaussianMixture>(hc.inner())->conditionals();
|
||||
|
||||
DiscreteValues dv;
|
||||
dv[1] = 1;
|
||||
|
||||
VectorValues cv;
|
||||
cv.insert(X(2), Vector2(0.0, 0.0));
|
||||
|
||||
HybridValues hv(dv, cv);
|
||||
|
||||
// std::cout << conditional2(values).markdown();
|
||||
EXPECT(assert_equal(*conditional2(dv), *conditionals(dv), 1e-6));
|
||||
EXPECT(conditional2(dv) == conditionals(dv));
|
||||
HybridLookupTable hlt(hc);
|
||||
|
||||
// hlt.argmaxInPlace(&hv);
|
||||
|
||||
HybridLookupDAG dag;
|
||||
dag.push_back(hlt);
|
||||
dag.argmax(hv);
|
||||
|
||||
// HybridBayesNet hbn;
|
||||
// hbn.push_back(hc);
|
||||
// hbn.optimize();
|
||||
}
|
||||
|
||||
TEST(HybridLookupTable, hybrid_argmax) {
|
||||
Matrix S1(2, 2);
|
||||
S1(0, 0) = 1;
|
||||
S1(1, 0) = 0;
|
||||
S1(0, 1) = 0;
|
||||
S1(1, 1) = 1;
|
||||
|
||||
Vector2 d1(0.2, 0.5), d2(-0.5, 0.6);
|
||||
|
||||
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector2(1.0, 0.34));
|
||||
|
||||
auto conditional0 =
|
||||
boost::make_shared<GaussianConditional>(X(1), d1, S1, model),
|
||||
conditional1 =
|
||||
boost::make_shared<GaussianConditional>(X(1), d2, S1, model);
|
||||
|
||||
DiscreteKey m1(1, 2);
|
||||
GaussianMixture::Conditionals conditionals(
|
||||
{m1},
|
||||
vector<GaussianConditional::shared_ptr>{conditional0, conditional1});
|
||||
boost::shared_ptr<GaussianMixture> mixtureFactor(
|
||||
new GaussianMixture({X(1)}, {}, {m1}, conditionals));
|
||||
|
||||
HybridConditional hc(mixtureFactor);
|
||||
|
||||
DiscreteValues dv;
|
||||
dv[1] = 1;
|
||||
VectorValues cv;
|
||||
// cv.insert(X(2),Vector2(0.0, 0.0));
|
||||
HybridValues hv(dv, cv);
|
||||
|
||||
HybridLookupTable hlt(hc);
|
||||
|
||||
hlt.argmaxInPlace(&hv);
|
||||
|
||||
EXPECT(assert_equal(hv.at(X(1)), d2));
|
||||
}
|
||||
|
||||
TEST(HybridLookupTable, discrete_argmax) {
|
||||
DiscreteKey X(0, 2), Y(1, 2);
|
||||
|
||||
auto conditional = boost::make_shared<DiscreteConditional>(X | Y = "0/1 3/2");
|
||||
|
||||
HybridConditional hc(conditional);
|
||||
|
||||
HybridLookupTable hlt(hc);
|
||||
|
||||
DiscreteValues dv;
|
||||
dv[1] = 0;
|
||||
VectorValues cv;
|
||||
// cv.insert(X(2),Vector2(0.0, 0.0));
|
||||
HybridValues hv(dv, cv);
|
||||
|
||||
hlt.argmaxInPlace(&hv);
|
||||
|
||||
EXPECT(assert_equal(hv.atDiscrete(0), 1));
|
||||
|
||||
DecisionTreeFactor f1(X, "2 3");
|
||||
auto conditional2 = boost::make_shared<DiscreteConditional>(1, f1);
|
||||
|
||||
HybridConditional hc2(conditional2);
|
||||
|
||||
HybridLookupTable hlt2(hc2);
|
||||
|
||||
HybridValues hv2;
|
||||
|
||||
hlt2.argmaxInPlace(&hv2);
|
||||
|
||||
EXPECT(assert_equal(hv2.atDiscrete(0), 1));
|
||||
}
|
||||
|
||||
TEST(HybridLookupTable, gaussian_argmax) {
|
||||
Matrix S1(2, 2);
|
||||
S1(0, 0) = 1;
|
||||
S1(1, 0) = 0;
|
||||
S1(0, 1) = 0;
|
||||
S1(1, 1) = 1;
|
||||
|
||||
Vector2 d1(0.2, 0.5), d2(-0.5, 0.6);
|
||||
|
||||
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector2(1.0, 0.34));
|
||||
|
||||
auto conditional =
|
||||
boost::make_shared<GaussianConditional>(X(1), d1, S1, X(2), -S1, model);
|
||||
|
||||
HybridConditional hc(conditional);
|
||||
|
||||
HybridLookupTable hlt(hc);
|
||||
|
||||
DiscreteValues dv;
|
||||
// dv[1]=0;
|
||||
VectorValues cv;
|
||||
cv.insert(X(2), d2);
|
||||
HybridValues hv(dv, cv);
|
||||
|
||||
hlt.argmaxInPlace(&hv);
|
||||
|
||||
EXPECT(assert_equal(hv.at(X(1)), d1 + d2));
|
||||
}
|
||||
|
||||
TEST(HybridLookupDAG, argmax) {
|
||||
Matrix S1(2, 2);
|
||||
S1(0, 0) = 1;
|
||||
S1(1, 0) = 0;
|
||||
S1(0, 1) = 0;
|
||||
S1(1, 1) = 1;
|
||||
|
||||
Vector2 d1(0.2, 0.5), d2(-0.5, 0.6);
|
||||
|
||||
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector2(1.0, 0.34));
|
||||
|
||||
auto conditional0 =
|
||||
boost::make_shared<GaussianConditional>(X(2), d1, S1, model),
|
||||
conditional1 =
|
||||
boost::make_shared<GaussianConditional>(X(2), d2, S1, model);
|
||||
|
||||
DiscreteKey m1(1, 2);
|
||||
GaussianMixture::Conditionals conditionals(
|
||||
{m1},
|
||||
vector<GaussianConditional::shared_ptr>{conditional0, conditional1});
|
||||
boost::shared_ptr<GaussianMixture> mixtureFactor(
|
||||
new GaussianMixture({X(2)}, {}, {m1}, conditionals));
|
||||
HybridConditional hc2(mixtureFactor);
|
||||
HybridLookupTable hlt2(hc2);
|
||||
|
||||
auto conditional2 =
|
||||
boost::make_shared<GaussianConditional>(X(1), d1, S1, X(2), -S1, model);
|
||||
|
||||
HybridConditional hc1(conditional2);
|
||||
HybridLookupTable hlt1(hc1);
|
||||
|
||||
DecisionTreeFactor f1(m1, "2 3");
|
||||
auto discrete_conditional = boost::make_shared<DiscreteConditional>(1, f1);
|
||||
|
||||
HybridConditional hc3(discrete_conditional);
|
||||
HybridLookupTable hlt3(hc3);
|
||||
|
||||
HybridLookupDAG dag;
|
||||
dag.push_back(hlt1);
|
||||
dag.push_back(hlt2);
|
||||
dag.push_back(hlt3);
|
||||
auto hv = dag.argmax();
|
||||
|
||||
EXPECT(assert_equal(hv.atDiscrete(1), 1));
|
||||
EXPECT(assert_equal(hv.at(X(2)), d2));
|
||||
EXPECT(assert_equal(hv.at(X(1)), d2 + d1));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
Loading…
Reference in New Issue