Use LLT rather than inverse

release/4.3a0
Frank Dellaert 2024-12-09 16:38:15 -05:00
parent a425e6e3d4
commit 1ae3fc2ad8
1 changed files with 70 additions and 50 deletions

View File

@ -20,26 +20,35 @@
* @author Frank Dellaert
*/
#include <gtsam/linear/KalmanFilter.h>
#include <gtsam/base/Testable.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/HessianFactor.h>
#include <gtsam/base/Testable.h>
#include <gtsam/linear/KalmanFilter.h>
using namespace std;
namespace gtsam {
/* ************************************************************************* */
// Auxiliary function to solve factor graph and return pointer to root conditional
KalmanFilter::State //
KalmanFilter::solve(const GaussianFactorGraph& factorGraph) const {
// In the code below we often need to multiply matrices with R, the Cholesky
// factor of the information matrix Q^{-1}, when given a covariance matrix Q.
// We can do this efficiently using Eigen, as we have:
// Q = L L^T
// => Q^{-1} = L^{-T}L^{-1} = R^T R
// => L^{-1} = R
// Rather than explicitly calculate R and do R*A, we should use L.solve(A)
// The following macro makes L available in the scope where it is used:
#define FACTORIZE_Q_INTO_L(Q) \
Eigen::LLT<Matrix> llt(Q); \
auto L = llt.matrixL();
/* ************************************************************************* */
// Auxiliary function to solve factor graph and return pointer to root
// conditional
KalmanFilter::State KalmanFilter::solve(
const GaussianFactorGraph& factorGraph) const {
// Eliminate the graph using the provided Eliminate function
Ordering ordering(factorGraph.keys());
const auto bayesNet = //
factorGraph.eliminateSequential(ordering, function_);
const auto bayesNet = factorGraph.eliminateSequential(ordering, function_);
// As this is a filter, all we need is the posterior P(x_t).
// This is the last GaussianConditional in the resulting BayesNet
@ -49,9 +58,8 @@ KalmanFilter::solve(const GaussianFactorGraph& factorGraph) const {
/* ************************************************************************* */
// Auxiliary function to create a small graph for predict or update and solve
KalmanFilter::State //
KalmanFilter::fuse(const State& p, GaussianFactor::shared_ptr newFactor) const {
KalmanFilter::State KalmanFilter::fuse(
const State& p, GaussianFactor::shared_ptr newFactor) const {
// Create a factor graph
GaussianFactorGraph factorGraph;
factorGraph.push_back(p);
@ -63,20 +71,27 @@ KalmanFilter::fuse(const State& p, GaussianFactor::shared_ptr newFactor) const {
/* ************************************************************************* */
KalmanFilter::State KalmanFilter::init(const Vector& x0,
const SharedDiagonal& P0) const {
const SharedDiagonal& P0) const {
// Create a factor graph f(x0), eliminate it into P(x0)
GaussianFactorGraph factorGraph;
factorGraph.emplace_shared<JacobianFactor>(0, I_, x0, P0); // |x-x0|^2_diagSigma
factorGraph.emplace_shared<JacobianFactor>(0, I_, x0,
P0); // |x-x0|^2_P0
return solve(factorGraph);
}
/* ************************************************************************* */
KalmanFilter::State KalmanFilter::init(const Vector& x, const Matrix& P0) const {
KalmanFilter::State KalmanFilter::init(const Vector& x0,
const Matrix& P0) const {
// Create a factor graph f(x0), eliminate it into P(x0)
GaussianFactorGraph factorGraph;
factorGraph.emplace_shared<HessianFactor>(0, x, P0); // 0.5*(x-x0)'*inv(Sigma)*(x-x0)
// Perform Cholesky decomposition of P0
FACTORIZE_Q_INTO_L(P0)
// Premultiply I and x0 with R
const Matrix R = L.solve(I_); // = R
const Vector b = L.solve(x0); // = R*x0
factorGraph.emplace_shared<JacobianFactor>(0, R, b);
return solve(factorGraph);
}
@ -87,21 +102,23 @@ void KalmanFilter::print(const string& s) const {
/* ************************************************************************* */
KalmanFilter::State KalmanFilter::predict(const State& p, const Matrix& F,
const Matrix& B, const Vector& u, const SharedDiagonal& model) const {
const Matrix& B, const Vector& u,
const SharedDiagonal& model) const {
// The factor related to the motion model is defined as
// f2(x_{t},x_{t+1}) = (F*x_{t} + B*u - x_{t+1}) * Q^-1 * (F*x_{t} + B*u - x_{t+1})^T
// f2(x_{k},x_{k+1}) =
// (F*x_{k} + B*u - x_{k+1}) * Q^-1 * (F*x_{k} + B*u - x_{k+1})^T
Key k = step(p);
return fuse(p,
std::make_shared<JacobianFactor>(k, -F, k + 1, I_, B * u, model));
std::make_shared<JacobianFactor>(k, -F, k + 1, I_, B * u, model));
}
/* ************************************************************************* */
KalmanFilter::State KalmanFilter::predictQ(const State& p, const Matrix& F,
const Matrix& B, const Vector& u, const Matrix& Q) const {
const Matrix& B, const Vector& u,
const Matrix& Q) const {
#ifndef NDEBUG
DenseIndex n = F.cols();
const DenseIndex n = dim();
assert(F.cols() == n);
assert(F.rows() == n);
assert(B.rows() == n);
assert(B.cols() == u.size());
@ -109,50 +126,53 @@ KalmanFilter::State KalmanFilter::predictQ(const State& p, const Matrix& F,
assert(Q.cols() == n);
#endif
// The factor related to the motion model is defined as
// f2(x_{t},x_{t+1}) = (F*x_{t} + B*u - x_{t+1}) * Q^-1 * (F*x_{t} + B*u - x_{t+1})^T
// See documentation in HessianFactor, we have A1 = -F, A2 = I_, b = B*u:
// TODO: starts to seem more elaborate than straight-up KF equations?
Matrix M = Q.inverse(), Ft = trans(F);
Matrix G12 = -Ft * M, G11 = -G12 * F, G22 = M;
Vector b = B * u, g2 = M * b, g1 = -Ft * g2;
double f = dot(b, g2);
Key k = step(p);
return fuse(p,
std::make_shared<HessianFactor>(k, k + 1, G11, G12, g1, G22, g2, f));
// Perform Cholesky decomposition of Q
FACTORIZE_Q_INTO_L(Q)
// Premultiply A1 = -F and A2 = I, b = B * u with R
const Matrix A1 = -L.solve(F); // = -R*F
const Matrix A2 = L.solve(I_); // = R
const Vector b = L.solve(B * u); // = R * (B * u)
return predict2(p, A1, A2, b);
}
/* ************************************************************************* */
KalmanFilter::State KalmanFilter::predict2(const State& p, const Matrix& A0,
const Matrix& A1, const Vector& b, const SharedDiagonal& model) const {
const Matrix& A1, const Vector& b,
const SharedDiagonal& model) const {
// Nhe factor related to the motion model is defined as
// f2(x_{t},x_{t+1}) = |A0*x_{t} + A1*x_{t+1} - b|^2
// f2(x_{k},x_{k+1}) = |A0*x_{k} + A1*x_{k+1} - b|^2
Key k = step(p);
return fuse(p, std::make_shared<JacobianFactor>(k, A0, k + 1, A1, b, model));
}
/* ************************************************************************* */
KalmanFilter::State KalmanFilter::update(const State& p, const Matrix& H,
const Vector& z, const SharedDiagonal& model) const {
const Vector& z,
const SharedDiagonal& model) const {
// The factor related to the measurements would be defined as
// f2 = (h(x_{t}) - z_{t}) * R^-1 * (h(x_{t}) - z_{t})^T
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
// f2 = (h(x_{k}) - z_{k}) * R^-1 * (h(x_{k}) - z_{k})^T
// = (x_{k} - z_{k}) * R^-1 * (x_{k} - z_{k})^T
Key k = step(p);
return fuse(p, std::make_shared<JacobianFactor>(k, H, z, model));
}
/* ************************************************************************* */
KalmanFilter::State KalmanFilter::updateQ(const State& p, const Matrix& H,
const Vector& z, const Matrix& Q) const {
const Vector& z,
const Matrix& Q) const {
Key k = step(p);
Matrix M = Q.inverse(), Ht = trans(H);
Matrix G = Ht * M * H;
Vector g = Ht * M * z;
double f = dot(z, M * z);
return fuse(p, std::make_shared<HessianFactor>(k, G, g, f));
// Perform Cholesky decomposition of Q
FACTORIZE_Q_INTO_L(Q)
// Pre-multiply H and z with R, respectively
const Matrix RtH = L.solve(H); // = R * H
const Vector b = L.solve(z); // = R * z
return fuse(p, std::make_shared<JacobianFactor>(k, RtH, b));
}
/* ************************************************************************* */
} // \namespace gtsam
} // namespace gtsam