Right marginals for tiny1
parent
f8d75abfeb
commit
12d02bed1a
|
@ -209,7 +209,7 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
// decision tree indexed by all discrete keys involved.
|
||||
GaussianFactorGraphTree sum = factors.assembleGraphTree();
|
||||
|
||||
// TODO(dellaert): does assembleGraphTree not guarantee we do not need this?
|
||||
// TODO(dellaert): does assembleGraphTree not guarantee this?
|
||||
sum = removeEmpty(sum);
|
||||
|
||||
using EliminationPair = std::pair<boost::shared_ptr<GaussianConditional>,
|
||||
|
@ -234,16 +234,16 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
gttoc_(hybrid_eliminate);
|
||||
#endif
|
||||
|
||||
const double logZ = graph_z.constant - conditional->logNormalizationConstant();
|
||||
// Get the log of the log normalization constant inverse.
|
||||
double logZ = -conditional->logNormalizationConstant();
|
||||
|
||||
// IF this is the last continuous variable to eliminated, we need to
|
||||
// calculate the error here: the value of all factors at the mean, see
|
||||
// ml_map_rao.pdf.
|
||||
if (continuousSeparator.empty()) {
|
||||
const auto posterior_mean = conditional->solve(VectorValues());
|
||||
logZ += graph_z.graph.error(posterior_mean);
|
||||
}
|
||||
// double logZ = -conditional->logNormalizationConstant();
|
||||
// // IF this is the last continuous variable to eliminated, we need to
|
||||
// // calculate the error here: the value of all factors at the mean, see
|
||||
// // ml_map_rao.pdf.
|
||||
// if (continuousSeparator.empty()) {
|
||||
// const auto posterior_mean = conditional->solve(VectorValues());
|
||||
// logZ += graph_z.graph.error(posterior_mean);
|
||||
// }
|
||||
return {conditional, {newFactor, logZ}};
|
||||
};
|
||||
|
||||
|
@ -270,11 +270,12 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
|
|||
auto factorProb =
|
||||
[&](const GaussianMixtureFactor::FactorAndConstant &factor_z) {
|
||||
// This is the probability q(μ) at the MLE point.
|
||||
// factor_z.factor is a factor without keys, just containing the residual.
|
||||
// return exp(-factor_z.error(VectorValues()));
|
||||
// TODO(dellaert): this is not correct, since VectorValues() is not
|
||||
// the MLE point. But it does not matter, as at the MLE point the
|
||||
// error will be zero, hence:
|
||||
return exp(-factor_z.constant);
|
||||
return exp(factor_z.constant);
|
||||
};
|
||||
const DecisionTree<Key, double> fdt(newFactors, factorProb);
|
||||
const auto discreteFactor =
|
||||
|
|
Loading…
Reference in New Issue