commit
						0a1a7510f9
					
				| 
						 | 
				
			
			@ -20,13 +20,14 @@
 | 
			
		|||
#include <vector>
 | 
			
		||||
#include <map>
 | 
			
		||||
#include <boost/shared_ptr.hpp>
 | 
			
		||||
#include <gtsam/inference/BayesNet.h>
 | 
			
		||||
#include <gtsam/inference/FactorGraph.h>
 | 
			
		||||
#include <gtsam/discrete/DiscreteConditional.h>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
/** A Bayes net made from linear-Discrete densities */
 | 
			
		||||
  class GTSAM_EXPORT DiscreteBayesNet: public FactorGraph<DiscreteConditional>
 | 
			
		||||
  class GTSAM_EXPORT DiscreteBayesNet: public BayesNet<DiscreteConditional>
 | 
			
		||||
  {
 | 
			
		||||
  public:
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -29,13 +29,32 @@ namespace gtsam {
 | 
			
		|||
  template class BayesTreeCliqueBase<DiscreteBayesTreeClique, DiscreteFactorGraph>;
 | 
			
		||||
  template class BayesTree<DiscreteBayesTreeClique>;
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************* */
 | 
			
		||||
  double DiscreteBayesTreeClique::evaluate(
 | 
			
		||||
      const DiscreteConditional::Values& values) const {
 | 
			
		||||
    // evaluate all conditionals and multiply
 | 
			
		||||
    double result = (*conditional_)(values);
 | 
			
		||||
    for (const auto& child : children) {
 | 
			
		||||
      result *= child->evaluate(values);
 | 
			
		||||
    }
 | 
			
		||||
    return result;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************* */
 | 
			
		||||
  bool DiscreteBayesTree::equals(const This& other, double tol) const
 | 
			
		||||
  {
 | 
			
		||||
  bool DiscreteBayesTree::equals(const This& other, double tol) const {
 | 
			
		||||
    return Base::equals(other, tol);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************* */
 | 
			
		||||
  double DiscreteBayesTree::evaluate(
 | 
			
		||||
      const DiscreteConditional::Values& values) const {
 | 
			
		||||
    double result = 1.0;
 | 
			
		||||
    for (const auto& root : roots_) {
 | 
			
		||||
      result *= root->evaluate(values);
 | 
			
		||||
    }
 | 
			
		||||
    return result;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
} // \namespace gtsam
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -11,7 +11,8 @@
 | 
			
		|||
 | 
			
		||||
/**
 | 
			
		||||
 * @file    DiscreteBayesTree.h
 | 
			
		||||
 * @brief   Discrete Bayes Tree, the result of eliminating a DiscreteJunctionTree
 | 
			
		||||
 * @brief   Discrete Bayes Tree, the result of eliminating a
 | 
			
		||||
 * DiscreteJunctionTree
 | 
			
		||||
 * @brief   DiscreteBayesTree
 | 
			
		||||
 * @author  Frank Dellaert
 | 
			
		||||
 * @author  Richard Roberts
 | 
			
		||||
| 
						 | 
				
			
			@ -22,45 +23,62 @@
 | 
			
		|||
#include <gtsam/discrete/DiscreteBayesNet.h>
 | 
			
		||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
 | 
			
		||||
#include <gtsam/inference/BayesTree.h>
 | 
			
		||||
#include <gtsam/inference/Conditional.h>
 | 
			
		||||
#include <gtsam/inference/BayesTreeCliqueBase.h>
 | 
			
		||||
 | 
			
		||||
#include <string>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
  // Forward declarations
 | 
			
		||||
  class DiscreteConditional;
 | 
			
		||||
  class VectorValues;
 | 
			
		||||
// Forward declarations
 | 
			
		||||
class DiscreteConditional;
 | 
			
		||||
class VectorValues;
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************* */
 | 
			
		||||
  /** A clique in a DiscreteBayesTree */
 | 
			
		||||
  class GTSAM_EXPORT DiscreteBayesTreeClique :
 | 
			
		||||
    public BayesTreeCliqueBase<DiscreteBayesTreeClique, DiscreteFactorGraph>
 | 
			
		||||
  {
 | 
			
		||||
  public:
 | 
			
		||||
    typedef DiscreteBayesTreeClique This;
 | 
			
		||||
    typedef BayesTreeCliqueBase<DiscreteBayesTreeClique, DiscreteFactorGraph> Base;
 | 
			
		||||
    typedef boost::shared_ptr<This> shared_ptr;
 | 
			
		||||
    typedef boost::weak_ptr<This> weak_ptr;
 | 
			
		||||
    DiscreteBayesTreeClique() {}
 | 
			
		||||
    DiscreteBayesTreeClique(const boost::shared_ptr<DiscreteConditional>& conditional) : Base(conditional) {}
 | 
			
		||||
  };
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
/** A clique in a DiscreteBayesTree */
 | 
			
		||||
class GTSAM_EXPORT DiscreteBayesTreeClique
 | 
			
		||||
    : public BayesTreeCliqueBase<DiscreteBayesTreeClique, DiscreteFactorGraph> {
 | 
			
		||||
 public:
 | 
			
		||||
  typedef DiscreteBayesTreeClique This;
 | 
			
		||||
  typedef BayesTreeCliqueBase<DiscreteBayesTreeClique, DiscreteFactorGraph>
 | 
			
		||||
      Base;
 | 
			
		||||
  typedef boost::shared_ptr<This> shared_ptr;
 | 
			
		||||
  typedef boost::weak_ptr<This> weak_ptr;
 | 
			
		||||
  DiscreteBayesTreeClique() {}
 | 
			
		||||
  DiscreteBayesTreeClique(
 | 
			
		||||
      const boost::shared_ptr<DiscreteConditional>& conditional)
 | 
			
		||||
      : Base(conditional) {}
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************* */
 | 
			
		||||
  /** A Bayes tree representing a Discrete density */
 | 
			
		||||
  class GTSAM_EXPORT DiscreteBayesTree :
 | 
			
		||||
    public BayesTree<DiscreteBayesTreeClique>
 | 
			
		||||
  {
 | 
			
		||||
  private:
 | 
			
		||||
    typedef BayesTree<DiscreteBayesTreeClique> Base;
 | 
			
		||||
  /// print index signature only
 | 
			
		||||
  void printSignature(
 | 
			
		||||
      const std::string& s = "Clique: ",
 | 
			
		||||
      const KeyFormatter& formatter = DefaultKeyFormatter) const {
 | 
			
		||||
    conditional_->printSignature(s, formatter);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  public:
 | 
			
		||||
    typedef DiscreteBayesTree This;
 | 
			
		||||
    typedef boost::shared_ptr<This> shared_ptr;
 | 
			
		||||
  //** evaluate conditional probability of subtree for given Values */
 | 
			
		||||
  double evaluate(const DiscreteConditional::Values& values) const;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
    /** Default constructor, creates an empty Bayes tree */
 | 
			
		||||
    DiscreteBayesTree() {}
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
/** A Bayes tree representing a Discrete density */
 | 
			
		||||
class GTSAM_EXPORT DiscreteBayesTree
 | 
			
		||||
    : public BayesTree<DiscreteBayesTreeClique> {
 | 
			
		||||
 private:
 | 
			
		||||
  typedef BayesTree<DiscreteBayesTreeClique> Base;
 | 
			
		||||
 | 
			
		||||
    /** Check equality */
 | 
			
		||||
    bool equals(const This& other, double tol = 1e-9) const;
 | 
			
		||||
  };
 | 
			
		||||
 public:
 | 
			
		||||
  typedef DiscreteBayesTree This;
 | 
			
		||||
  typedef boost::shared_ptr<This> shared_ptr;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
  /** Default constructor, creates an empty Bayes tree */
 | 
			
		||||
  DiscreteBayesTree() {}
 | 
			
		||||
 | 
			
		||||
  /** Check equality */
 | 
			
		||||
  bool equals(const This& other, double tol = 1e-9) const;
 | 
			
		||||
 | 
			
		||||
  //** evaluate probability for given Values */
 | 
			
		||||
  double evaluate(const DiscreteConditional::Values& values) const;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
}  // namespace gtsam
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -24,6 +24,8 @@
 | 
			
		|||
#include <boost/shared_ptr.hpp>
 | 
			
		||||
#include <boost/make_shared.hpp>
 | 
			
		||||
 | 
			
		||||
#include <string>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
| 
						 | 
				
			
			@ -92,6 +94,13 @@ public:
 | 
			
		|||
  /// @name Standard Interface
 | 
			
		||||
  /// @{
 | 
			
		||||
 | 
			
		||||
  /// print index signature only
 | 
			
		||||
  void printSignature(
 | 
			
		||||
      const std::string& s = "Discrete Conditional: ",
 | 
			
		||||
      const KeyFormatter& formatter = DefaultKeyFormatter) const {
 | 
			
		||||
    static_cast<const BaseConditional*>(this)->print(s, formatter);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /// Evaluate, just look up in AlgebraicDecisonTree
 | 
			
		||||
  virtual double operator()(const Values& values) const {
 | 
			
		||||
    return Potentials::operator()(values);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,261 +1,216 @@
 | 
			
		|||
///* ----------------------------------------------------------------------------
 | 
			
		||||
//
 | 
			
		||||
// * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
// * Atlanta, Georgia 30332-0415
 | 
			
		||||
// * All Rights Reserved
 | 
			
		||||
// * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
//
 | 
			
		||||
// * See LICENSE for the license information
 | 
			
		||||
//
 | 
			
		||||
// * -------------------------------------------------------------------------- */
 | 
			
		||||
//
 | 
			
		||||
///*
 | 
			
		||||
// * @file testDiscreteBayesTree.cpp
 | 
			
		||||
// * @date sept 15, 2012
 | 
			
		||||
// * @author Frank Dellaert
 | 
			
		||||
// */
 | 
			
		||||
//
 | 
			
		||||
//#include <gtsam/discrete/DiscreteBayesNet.h>
 | 
			
		||||
//#include <gtsam/discrete/DiscreteBayesTree.h>
 | 
			
		||||
//#include <gtsam/discrete/DiscreteFactorGraph.h>
 | 
			
		||||
//
 | 
			
		||||
//#include <boost/assign/std/vector.hpp>
 | 
			
		||||
//using namespace boost::assign;
 | 
			
		||||
//
 | 
			
		||||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
* GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
 | 
			
		||||
* Atlanta, Georgia 30332-0415
 | 
			
		||||
* All Rights Reserved
 | 
			
		||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
* See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
* -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * @file testDiscreteBayesTree.cpp
 | 
			
		||||
 * @date sept 15, 2012
 | 
			
		||||
 * @author Frank Dellaert
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <gtsam/base/Vector.h>
 | 
			
		||||
#include <gtsam/discrete/DiscreteBayesNet.h>
 | 
			
		||||
#include <gtsam/discrete/DiscreteBayesTree.h>
 | 
			
		||||
#include <gtsam/discrete/DiscreteFactorGraph.h>
 | 
			
		||||
#include <gtsam/inference/BayesNet-inst.h>
 | 
			
		||||
 | 
			
		||||
#include <boost/assign/std/vector.hpp>
 | 
			
		||||
using namespace boost::assign;
 | 
			
		||||
 | 
			
		||||
#include <CppUnitLite/TestHarness.h>
 | 
			
		||||
//
 | 
			
		||||
//using namespace std;
 | 
			
		||||
//using namespace gtsam;
 | 
			
		||||
//
 | 
			
		||||
//static bool debug = false;
 | 
			
		||||
//
 | 
			
		||||
///**
 | 
			
		||||
// * Custom clique class to debug shortcuts
 | 
			
		||||
// */
 | 
			
		||||
////class Clique: public BayesTreeCliqueBaseOrdered<Clique, DiscreteConditional> {
 | 
			
		||||
////
 | 
			
		||||
////protected:
 | 
			
		||||
////
 | 
			
		||||
////public:
 | 
			
		||||
////
 | 
			
		||||
////  typedef BayesTreeCliqueBaseOrdered<Clique, DiscreteConditional> Base;
 | 
			
		||||
////  typedef boost::shared_ptr<Clique> shared_ptr;
 | 
			
		||||
////
 | 
			
		||||
////  // Constructors
 | 
			
		||||
////  Clique() {
 | 
			
		||||
////  }
 | 
			
		||||
////  Clique(const DiscreteConditional::shared_ptr& conditional) :
 | 
			
		||||
////      Base(conditional) {
 | 
			
		||||
////  }
 | 
			
		||||
////  Clique(
 | 
			
		||||
////      const std::pair<DiscreteConditional::shared_ptr,
 | 
			
		||||
////          DiscreteConditional::FactorType::shared_ptr>& result) :
 | 
			
		||||
////      Base(result) {
 | 
			
		||||
////  }
 | 
			
		||||
////
 | 
			
		||||
////  /// print index signature only
 | 
			
		||||
////  void printSignature(const std::string& s = "Clique: ",
 | 
			
		||||
////      const KeyFormatter& indexFormatter = DefaultKeyFormatter) const {
 | 
			
		||||
////    ((IndexConditionalOrdered::shared_ptr) conditional_)->print(s, indexFormatter);
 | 
			
		||||
////  }
 | 
			
		||||
////
 | 
			
		||||
////  /// evaluate value of sub-tree
 | 
			
		||||
////  double evaluate(const DiscreteConditional::Values & values) {
 | 
			
		||||
////    double result = (*(this->conditional_))(values);
 | 
			
		||||
////    // evaluate all children and multiply into result
 | 
			
		||||
////    for(boost::shared_ptr<Clique> c: children_)
 | 
			
		||||
////      result *= c->evaluate(values);
 | 
			
		||||
////    return result;
 | 
			
		||||
////  }
 | 
			
		||||
////
 | 
			
		||||
////};
 | 
			
		||||
//
 | 
			
		||||
////typedef BayesTreeOrdered<DiscreteConditional, Clique> DiscreteBayesTree;
 | 
			
		||||
////
 | 
			
		||||
/////* ************************************************************************* */
 | 
			
		||||
////double evaluate(const DiscreteBayesTree& tree,
 | 
			
		||||
////    const DiscreteConditional::Values & values) {
 | 
			
		||||
////  return tree.root()->evaluate(values);
 | 
			
		||||
////}
 | 
			
		||||
//
 | 
			
		||||
///* ************************************************************************* */
 | 
			
		||||
//
 | 
			
		||||
//TEST_UNSAFE( DiscreteBayesTree, thinTree ) {
 | 
			
		||||
//
 | 
			
		||||
//  const int nrNodes = 15;
 | 
			
		||||
//  const size_t nrStates = 2;
 | 
			
		||||
//
 | 
			
		||||
//  // define variables
 | 
			
		||||
//  vector<DiscreteKey> key;
 | 
			
		||||
//  for (int i = 0; i < nrNodes; i++) {
 | 
			
		||||
//    DiscreteKey key_i(i, nrStates);
 | 
			
		||||
//    key.push_back(key_i);
 | 
			
		||||
//  }
 | 
			
		||||
//
 | 
			
		||||
//  // create a thin-tree Bayesnet, a la Jean-Guillaume
 | 
			
		||||
//  DiscreteBayesNet bayesNet;
 | 
			
		||||
//  bayesNet.add(key[14] % "1/3");
 | 
			
		||||
//
 | 
			
		||||
//  bayesNet.add(key[13] | key[14] = "1/3 3/1");
 | 
			
		||||
//  bayesNet.add(key[12] | key[14] = "3/1 3/1");
 | 
			
		||||
//
 | 
			
		||||
//  bayesNet.add((key[11] | key[13], key[14]) = "1/4 2/3 3/2 4/1");
 | 
			
		||||
//  bayesNet.add((key[10] | key[13], key[14]) = "1/4 3/2 2/3 4/1");
 | 
			
		||||
//  bayesNet.add((key[9] | key[12], key[14]) = "4/1 2/3 F 1/4");
 | 
			
		||||
//  bayesNet.add((key[8] | key[12], key[14]) = "T 1/4 3/2 4/1");
 | 
			
		||||
//
 | 
			
		||||
//  bayesNet.add((key[7] | key[11], key[13]) = "1/4 2/3 3/2 4/1");
 | 
			
		||||
//  bayesNet.add((key[6] | key[11], key[13]) = "1/4 3/2 2/3 4/1");
 | 
			
		||||
//  bayesNet.add((key[5] | key[10], key[13]) = "4/1 2/3 3/2 1/4");
 | 
			
		||||
//  bayesNet.add((key[4] | key[10], key[13]) = "2/3 1/4 3/2 4/1");
 | 
			
		||||
//
 | 
			
		||||
//  bayesNet.add((key[3] | key[9], key[12]) = "1/4 2/3 3/2 4/1");
 | 
			
		||||
//  bayesNet.add((key[2] | key[9], key[12]) = "1/4 8/2 2/3 4/1");
 | 
			
		||||
//  bayesNet.add((key[1] | key[8], key[12]) = "4/1 2/3 3/2 1/4");
 | 
			
		||||
//  bayesNet.add((key[0] | key[8], key[12]) = "2/3 1/4 3/2 4/1");
 | 
			
		||||
//
 | 
			
		||||
////  if (debug) {
 | 
			
		||||
////    GTSAM_PRINT(bayesNet);
 | 
			
		||||
////    bayesNet.saveGraph("/tmp/discreteBayesNet.dot");
 | 
			
		||||
////  }
 | 
			
		||||
//
 | 
			
		||||
//  // create a BayesTree out of a Bayes net
 | 
			
		||||
//  DiscreteBayesTree bayesTree(bayesNet);
 | 
			
		||||
//  if (debug) {
 | 
			
		||||
//    GTSAM_PRINT(bayesTree);
 | 
			
		||||
//    bayesTree.saveGraph("/tmp/discreteBayesTree.dot");
 | 
			
		||||
//  }
 | 
			
		||||
//
 | 
			
		||||
//  // Check whether BN and BT give the same answer on all configurations
 | 
			
		||||
//  // Also calculate all some marginals
 | 
			
		||||
//  Vector marginals = zero(15);
 | 
			
		||||
//  double joint_12_14 = 0, joint_9_12_14 = 0, joint_8_12_14 = 0, joint_8_12 = 0,
 | 
			
		||||
//      joint82 = 0, joint12 = 0, joint24 = 0, joint45 = 0, joint46 = 0,
 | 
			
		||||
//      joint_4_11 = 0;
 | 
			
		||||
//  vector<DiscreteFactor::Values> allPosbValues = cartesianProduct(
 | 
			
		||||
//      key[0] & key[1] & key[2] & key[3] & key[4] & key[5] & key[6] & key[7]
 | 
			
		||||
//          & key[8] & key[9] & key[10] & key[11] & key[12] & key[13] & key[14]);
 | 
			
		||||
//  for (size_t i = 0; i < allPosbValues.size(); ++i) {
 | 
			
		||||
//    DiscreteFactor::Values x = allPosbValues[i];
 | 
			
		||||
//    double expected = evaluate(bayesNet, x);
 | 
			
		||||
//    double actual = evaluate(bayesTree, x);
 | 
			
		||||
//    DOUBLES_EQUAL(expected, actual, 1e-9);
 | 
			
		||||
//    // collect marginals
 | 
			
		||||
//    for (size_t i = 0; i < 15; i++)
 | 
			
		||||
//      if (x[i])
 | 
			
		||||
//        marginals[i] += actual;
 | 
			
		||||
//    // calculate shortcut 8 and 0
 | 
			
		||||
//    if (x[12] && x[14])
 | 
			
		||||
//      joint_12_14 += actual;
 | 
			
		||||
//    if (x[9] && x[12] & x[14])
 | 
			
		||||
//      joint_9_12_14 += actual;
 | 
			
		||||
//    if (x[8] && x[12] & x[14])
 | 
			
		||||
//      joint_8_12_14 += actual;
 | 
			
		||||
//    if (x[8] && x[12])
 | 
			
		||||
//      joint_8_12 += actual;
 | 
			
		||||
//    if (x[8] && x[2])
 | 
			
		||||
//      joint82 += actual;
 | 
			
		||||
//    if (x[1] && x[2])
 | 
			
		||||
//      joint12 += actual;
 | 
			
		||||
//    if (x[2] && x[4])
 | 
			
		||||
//      joint24 += actual;
 | 
			
		||||
//    if (x[4] && x[5])
 | 
			
		||||
//      joint45 += actual;
 | 
			
		||||
//    if (x[4] && x[6])
 | 
			
		||||
//      joint46 += actual;
 | 
			
		||||
//    if (x[4] && x[11])
 | 
			
		||||
//      joint_4_11 += actual;
 | 
			
		||||
//  }
 | 
			
		||||
//  DiscreteFactor::Values all1 = allPosbValues.back();
 | 
			
		||||
//
 | 
			
		||||
//  Clique::shared_ptr R = bayesTree.root();
 | 
			
		||||
//
 | 
			
		||||
//  // check separator marginal P(S0)
 | 
			
		||||
//  Clique::shared_ptr c = bayesTree[0];
 | 
			
		||||
//  DiscreteFactorGraph separatorMarginal0 = c->separatorMarginal(R,
 | 
			
		||||
//      EliminateDiscrete);
 | 
			
		||||
//  EXPECT_DOUBLES_EQUAL(joint_8_12, separatorMarginal0(all1), 1e-9);
 | 
			
		||||
//
 | 
			
		||||
//  // check separator marginal P(S9), should be P(14)
 | 
			
		||||
//  c = bayesTree[9];
 | 
			
		||||
//  DiscreteFactorGraph separatorMarginal9 = c->separatorMarginal(R,
 | 
			
		||||
//      EliminateDiscrete);
 | 
			
		||||
//  EXPECT_DOUBLES_EQUAL(marginals[14], separatorMarginal9(all1), 1e-9);
 | 
			
		||||
//
 | 
			
		||||
//  // check separator marginal of root, should be empty
 | 
			
		||||
//  c = bayesTree[11];
 | 
			
		||||
//  DiscreteFactorGraph separatorMarginal11 = c->separatorMarginal(R,
 | 
			
		||||
//      EliminateDiscrete);
 | 
			
		||||
//  EXPECT_LONGS_EQUAL(0, separatorMarginal11.size());
 | 
			
		||||
//
 | 
			
		||||
//  // check shortcut P(S9||R) to root
 | 
			
		||||
//  c = bayesTree[9];
 | 
			
		||||
//  DiscreteBayesNet shortcut = c->shortcut(R, EliminateDiscrete);
 | 
			
		||||
//  EXPECT_LONGS_EQUAL(0, shortcut.size());
 | 
			
		||||
//
 | 
			
		||||
//  // check shortcut P(S8||R) to root
 | 
			
		||||
//  c = bayesTree[8];
 | 
			
		||||
//  shortcut = c->shortcut(R, EliminateDiscrete);
 | 
			
		||||
//  EXPECT_DOUBLES_EQUAL(joint_12_14/marginals[14], evaluate(shortcut,all1),
 | 
			
		||||
//      1e-9);
 | 
			
		||||
//
 | 
			
		||||
//  // check shortcut P(S2||R) to root
 | 
			
		||||
//  c = bayesTree[2];
 | 
			
		||||
//  shortcut = c->shortcut(R, EliminateDiscrete);
 | 
			
		||||
//  EXPECT_DOUBLES_EQUAL(joint_9_12_14/marginals[14], evaluate(shortcut,all1),
 | 
			
		||||
//      1e-9);
 | 
			
		||||
//
 | 
			
		||||
//  // check shortcut P(S0||R) to root
 | 
			
		||||
//  c = bayesTree[0];
 | 
			
		||||
//  shortcut = c->shortcut(R, EliminateDiscrete);
 | 
			
		||||
//  EXPECT_DOUBLES_EQUAL(joint_8_12_14/marginals[14], evaluate(shortcut,all1),
 | 
			
		||||
//      1e-9);
 | 
			
		||||
//
 | 
			
		||||
//  // calculate all shortcuts to root
 | 
			
		||||
//  DiscreteBayesTree::Nodes cliques = bayesTree.nodes();
 | 
			
		||||
//  for(Clique::shared_ptr c: cliques) {
 | 
			
		||||
//    DiscreteBayesNet shortcut = c->shortcut(R, EliminateDiscrete);
 | 
			
		||||
//    if (debug) {
 | 
			
		||||
//      c->printSignature();
 | 
			
		||||
//      shortcut.print("shortcut:");
 | 
			
		||||
//    }
 | 
			
		||||
//  }
 | 
			
		||||
//
 | 
			
		||||
//  // Check all marginals
 | 
			
		||||
//  DiscreteFactor::shared_ptr marginalFactor;
 | 
			
		||||
//  for (size_t i = 0; i < 15; i++) {
 | 
			
		||||
//    marginalFactor = bayesTree.marginalFactor(i, EliminateDiscrete);
 | 
			
		||||
//    double actual = (*marginalFactor)(all1);
 | 
			
		||||
//    EXPECT_DOUBLES_EQUAL(marginals[i], actual, 1e-9);
 | 
			
		||||
//  }
 | 
			
		||||
//
 | 
			
		||||
//  DiscreteBayesNet::shared_ptr actualJoint;
 | 
			
		||||
//
 | 
			
		||||
//  // Check joint P(8,2) TODO: not disjoint !
 | 
			
		||||
////  actualJoint = bayesTree.jointBayesNet(8, 2, EliminateDiscrete);
 | 
			
		||||
////  EXPECT_DOUBLES_EQUAL(joint82, evaluate(*actualJoint,all1), 1e-9);
 | 
			
		||||
//
 | 
			
		||||
//  // Check joint P(1,2) TODO: not disjoint !
 | 
			
		||||
////  actualJoint = bayesTree.jointBayesNet(1, 2, EliminateDiscrete);
 | 
			
		||||
////  EXPECT_DOUBLES_EQUAL(joint12, evaluate(*actualJoint,all1), 1e-9);
 | 
			
		||||
//
 | 
			
		||||
//  // Check joint P(2,4)
 | 
			
		||||
//  actualJoint = bayesTree.jointBayesNet(2, 4, EliminateDiscrete);
 | 
			
		||||
//  EXPECT_DOUBLES_EQUAL(joint24, evaluate(*actualJoint,all1), 1e-9);
 | 
			
		||||
//
 | 
			
		||||
//  // Check joint P(4,5) TODO: not disjoint !
 | 
			
		||||
////  actualJoint = bayesTree.jointBayesNet(4, 5, EliminateDiscrete);
 | 
			
		||||
////  EXPECT_DOUBLES_EQUAL(joint46, evaluate(*actualJoint,all1), 1e-9);
 | 
			
		||||
//
 | 
			
		||||
//  // Check joint P(4,6) TODO: not disjoint !
 | 
			
		||||
////  actualJoint = bayesTree.jointBayesNet(4, 6, EliminateDiscrete);
 | 
			
		||||
////  EXPECT_DOUBLES_EQUAL(joint46, evaluate(*actualJoint,all1), 1e-9);
 | 
			
		||||
//
 | 
			
		||||
//  // Check joint P(4,11)
 | 
			
		||||
//  actualJoint = bayesTree.jointBayesNet(4, 11, EliminateDiscrete);
 | 
			
		||||
//  EXPECT_DOUBLES_EQUAL(joint_4_11, evaluate(*actualJoint,all1), 1e-9);
 | 
			
		||||
//
 | 
			
		||||
//}
 | 
			
		||||
 | 
			
		||||
#include <vector>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace gtsam;
 | 
			
		||||
 | 
			
		||||
static bool debug = false;
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
 | 
			
		||||
TEST_UNSAFE(DiscreteBayesTree, ThinTree) {
 | 
			
		||||
  const int nrNodes = 15;
 | 
			
		||||
  const size_t nrStates = 2;
 | 
			
		||||
 | 
			
		||||
  // define variables
 | 
			
		||||
  vector<DiscreteKey> key;
 | 
			
		||||
  for (int i = 0; i < nrNodes; i++) {
 | 
			
		||||
    DiscreteKey key_i(i, nrStates);
 | 
			
		||||
    key.push_back(key_i);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // create a thin-tree Bayesnet, a la Jean-Guillaume
 | 
			
		||||
  DiscreteBayesNet bayesNet;
 | 
			
		||||
  bayesNet.add(key[14] % "1/3");
 | 
			
		||||
 | 
			
		||||
  bayesNet.add(key[13] | key[14] = "1/3 3/1");
 | 
			
		||||
  bayesNet.add(key[12] | key[14] = "3/1 3/1");
 | 
			
		||||
 | 
			
		||||
  bayesNet.add((key[11] | key[13], key[14]) = "1/4 2/3 3/2 4/1");
 | 
			
		||||
  bayesNet.add((key[10] | key[13], key[14]) = "1/4 3/2 2/3 4/1");
 | 
			
		||||
  bayesNet.add((key[9] | key[12], key[14]) = "4/1 2/3 F 1/4");
 | 
			
		||||
  bayesNet.add((key[8] | key[12], key[14]) = "T 1/4 3/2 4/1");
 | 
			
		||||
 | 
			
		||||
  bayesNet.add((key[7] | key[11], key[13]) = "1/4 2/3 3/2 4/1");
 | 
			
		||||
  bayesNet.add((key[6] | key[11], key[13]) = "1/4 3/2 2/3 4/1");
 | 
			
		||||
  bayesNet.add((key[5] | key[10], key[13]) = "4/1 2/3 3/2 1/4");
 | 
			
		||||
  bayesNet.add((key[4] | key[10], key[13]) = "2/3 1/4 3/2 4/1");
 | 
			
		||||
 | 
			
		||||
  bayesNet.add((key[3] | key[9], key[12]) = "1/4 2/3 3/2 4/1");
 | 
			
		||||
  bayesNet.add((key[2] | key[9], key[12]) = "1/4 8/2 2/3 4/1");
 | 
			
		||||
  bayesNet.add((key[1] | key[8], key[12]) = "4/1 2/3 3/2 1/4");
 | 
			
		||||
  bayesNet.add((key[0] | key[8], key[12]) = "2/3 1/4 3/2 4/1");
 | 
			
		||||
 | 
			
		||||
  if (debug) {
 | 
			
		||||
    GTSAM_PRINT(bayesNet);
 | 
			
		||||
    bayesNet.saveGraph("/tmp/discreteBayesNet.dot");
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // create a BayesTree out of a Bayes net
 | 
			
		||||
  auto bayesTree = DiscreteFactorGraph(bayesNet).eliminateMultifrontal();
 | 
			
		||||
  if (debug) {
 | 
			
		||||
    GTSAM_PRINT(*bayesTree);
 | 
			
		||||
    bayesTree->saveGraph("/tmp/discreteBayesTree.dot");
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  auto R = bayesTree->roots().front();
 | 
			
		||||
 | 
			
		||||
  // Check whether BN and BT give the same answer on all configurations
 | 
			
		||||
  vector<DiscreteFactor::Values> allPosbValues = cartesianProduct(
 | 
			
		||||
      key[0] & key[1] & key[2] & key[3] & key[4] & key[5] & key[6] & key[7] &
 | 
			
		||||
      key[8] & key[9] & key[10] & key[11] & key[12] & key[13] & key[14]);
 | 
			
		||||
  for (size_t i = 0; i < allPosbValues.size(); ++i) {
 | 
			
		||||
    DiscreteFactor::Values x = allPosbValues[i];
 | 
			
		||||
    double expected = bayesNet.evaluate(x);
 | 
			
		||||
    double actual = bayesTree->evaluate(x);
 | 
			
		||||
    DOUBLES_EQUAL(expected, actual, 1e-9);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Calculate all some marginals for Values==all1
 | 
			
		||||
  Vector marginals = Vector::Zero(15);
 | 
			
		||||
  double joint_12_14 = 0, joint_9_12_14 = 0, joint_8_12_14 = 0, joint_8_12 = 0,
 | 
			
		||||
         joint82 = 0, joint12 = 0, joint24 = 0, joint45 = 0, joint46 = 0,
 | 
			
		||||
         joint_4_11 = 0, joint_11_13 = 0, joint_11_13_14 = 0,
 | 
			
		||||
         joint_11_12_13_14 = 0, joint_9_11_12_13 = 0, joint_8_11_12_13 = 0;
 | 
			
		||||
  for (size_t i = 0; i < allPosbValues.size(); ++i) {
 | 
			
		||||
    DiscreteFactor::Values x = allPosbValues[i];
 | 
			
		||||
    double px = bayesTree->evaluate(x);
 | 
			
		||||
    for (size_t i = 0; i < 15; i++)
 | 
			
		||||
      if (x[i]) marginals[i] += px;
 | 
			
		||||
    if (x[12] && x[14]) joint_12_14 += px;
 | 
			
		||||
    if (x[9] && x[12] && x[14]) joint_9_12_14 += px;
 | 
			
		||||
    if (x[8] && x[12] && x[14]) joint_8_12_14 += px;
 | 
			
		||||
    if (x[8] && x[12]) joint_8_12 += px;
 | 
			
		||||
    if (x[8] && x[2]) joint82 += px;
 | 
			
		||||
    if (x[1] && x[2]) joint12 += px;
 | 
			
		||||
    if (x[2] && x[4]) joint24 += px;
 | 
			
		||||
    if (x[4] && x[5]) joint45 += px;
 | 
			
		||||
    if (x[4] && x[6]) joint46 += px;
 | 
			
		||||
    if (x[4] && x[11]) joint_4_11 += px;
 | 
			
		||||
    if (x[11] && x[13]) {
 | 
			
		||||
      joint_11_13 += px;
 | 
			
		||||
      if (x[8] && x[12]) joint_8_11_12_13 += px;
 | 
			
		||||
      if (x[9] && x[12]) joint_9_11_12_13 += px;
 | 
			
		||||
      if (x[14]) {
 | 
			
		||||
        joint_11_13_14 += px;
 | 
			
		||||
        if (x[12]) {
 | 
			
		||||
          joint_11_12_13_14 += px;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  DiscreteFactor::Values all1 = allPosbValues.back();
 | 
			
		||||
 | 
			
		||||
  // check separator marginal P(S0)
 | 
			
		||||
  auto c = (*bayesTree)[0];
 | 
			
		||||
  DiscreteFactorGraph separatorMarginal0 =
 | 
			
		||||
      c->separatorMarginal(EliminateDiscrete);
 | 
			
		||||
  DOUBLES_EQUAL(joint_8_12, separatorMarginal0(all1), 1e-9);
 | 
			
		||||
 | 
			
		||||
  // check separator marginal P(S9), should be P(14)
 | 
			
		||||
  c = (*bayesTree)[9];
 | 
			
		||||
  DiscreteFactorGraph separatorMarginal9 =
 | 
			
		||||
      c->separatorMarginal(EliminateDiscrete);
 | 
			
		||||
  DOUBLES_EQUAL(marginals[14], separatorMarginal9(all1), 1e-9);
 | 
			
		||||
 | 
			
		||||
  // check separator marginal of root, should be empty
 | 
			
		||||
  c = (*bayesTree)[11];
 | 
			
		||||
  DiscreteFactorGraph separatorMarginal11 =
 | 
			
		||||
      c->separatorMarginal(EliminateDiscrete);
 | 
			
		||||
  LONGS_EQUAL(0, separatorMarginal11.size());
 | 
			
		||||
 | 
			
		||||
  // check shortcut P(S9||R) to root
 | 
			
		||||
  c = (*bayesTree)[9];
 | 
			
		||||
  DiscreteBayesNet shortcut = c->shortcut(R, EliminateDiscrete);
 | 
			
		||||
  LONGS_EQUAL(1, shortcut.size());
 | 
			
		||||
  DOUBLES_EQUAL(joint_11_13_14 / joint_11_13, shortcut.evaluate(all1), 1e-9);
 | 
			
		||||
 | 
			
		||||
  // check shortcut P(S8||R) to root
 | 
			
		||||
  c = (*bayesTree)[8];
 | 
			
		||||
  shortcut = c->shortcut(R, EliminateDiscrete);
 | 
			
		||||
  DOUBLES_EQUAL(joint_11_12_13_14 / joint_11_13, shortcut.evaluate(all1), 1e-9);
 | 
			
		||||
 | 
			
		||||
  // check shortcut P(S2||R) to root
 | 
			
		||||
  c = (*bayesTree)[2];
 | 
			
		||||
  shortcut = c->shortcut(R, EliminateDiscrete);
 | 
			
		||||
  DOUBLES_EQUAL(joint_9_11_12_13 / joint_11_13, shortcut.evaluate(all1), 1e-9);
 | 
			
		||||
 | 
			
		||||
  // check shortcut P(S0||R) to root
 | 
			
		||||
  c = (*bayesTree)[0];
 | 
			
		||||
  shortcut = c->shortcut(R, EliminateDiscrete);
 | 
			
		||||
  DOUBLES_EQUAL(joint_8_11_12_13 / joint_11_13, shortcut.evaluate(all1), 1e-9);
 | 
			
		||||
 | 
			
		||||
  // calculate all shortcuts to root
 | 
			
		||||
  DiscreteBayesTree::Nodes cliques = bayesTree->nodes();
 | 
			
		||||
  for (auto c : cliques) {
 | 
			
		||||
    DiscreteBayesNet shortcut = c.second->shortcut(R, EliminateDiscrete);
 | 
			
		||||
    if (debug) {
 | 
			
		||||
      c.second->conditional_->printSignature();
 | 
			
		||||
      shortcut.print("shortcut:");
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Check all marginals
 | 
			
		||||
  DiscreteFactor::shared_ptr marginalFactor;
 | 
			
		||||
  for (size_t i = 0; i < 15; i++) {
 | 
			
		||||
    marginalFactor = bayesTree->marginalFactor(i, EliminateDiscrete);
 | 
			
		||||
    double actual = (*marginalFactor)(all1);
 | 
			
		||||
    DOUBLES_EQUAL(marginals[i], actual, 1e-9);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  DiscreteBayesNet::shared_ptr actualJoint;
 | 
			
		||||
 | 
			
		||||
  // Check joint P(8, 2)
 | 
			
		||||
  actualJoint = bayesTree->jointBayesNet(8, 2, EliminateDiscrete);
 | 
			
		||||
  DOUBLES_EQUAL(joint82, actualJoint->evaluate(all1), 1e-9);
 | 
			
		||||
 | 
			
		||||
  // Check joint P(1, 2)
 | 
			
		||||
  actualJoint = bayesTree->jointBayesNet(1, 2, EliminateDiscrete);
 | 
			
		||||
  DOUBLES_EQUAL(joint12, actualJoint->evaluate(all1), 1e-9);
 | 
			
		||||
 | 
			
		||||
  // Check joint P(2, 4)
 | 
			
		||||
  actualJoint = bayesTree->jointBayesNet(2, 4, EliminateDiscrete);
 | 
			
		||||
  DOUBLES_EQUAL(joint24, actualJoint->evaluate(all1), 1e-9);
 | 
			
		||||
 | 
			
		||||
  // Check joint P(4, 5)
 | 
			
		||||
  actualJoint = bayesTree->jointBayesNet(4, 5, EliminateDiscrete);
 | 
			
		||||
  DOUBLES_EQUAL(joint45, actualJoint->evaluate(all1), 1e-9);
 | 
			
		||||
 | 
			
		||||
  // Check joint P(4, 6)
 | 
			
		||||
  actualJoint = bayesTree->jointBayesNet(4, 6, EliminateDiscrete);
 | 
			
		||||
  DOUBLES_EQUAL(joint46, actualJoint->evaluate(all1), 1e-9);
 | 
			
		||||
 | 
			
		||||
  // Check joint P(4, 11)
 | 
			
		||||
  actualJoint = bayesTree->jointBayesNet(4, 11, EliminateDiscrete);
 | 
			
		||||
  DOUBLES_EQUAL(joint_4_11, actualJoint->evaluate(all1), 1e-9);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
int main() {
 | 
			
		||||
| 
						 | 
				
			
			@ -263,4 +218,3 @@ int main() {
 | 
			
		|||
  return TestRegistry::runAllTests(tr);
 | 
			
		||||
}
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
										
											Binary file not shown.
										
									
								
							| 
						 | 
				
			
			@ -19,6 +19,7 @@
 | 
			
		|||
#include <gtsam/discrete/DiscreteFactorGraph.h>
 | 
			
		||||
#include <gtsam/discrete/DiscreteEliminationTree.h>
 | 
			
		||||
#include <gtsam/discrete/DiscreteBayesTree.h>
 | 
			
		||||
#include <gtsam/inference/BayesNet-inst.h>
 | 
			
		||||
 | 
			
		||||
#include <CppUnitLite/TestHarness.h>
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -136,57 +136,61 @@ namespace gtsam {
 | 
			
		|||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************* */
 | 
			
		||||
  /* *********************************************************************** */
 | 
			
		||||
  // separator marginal, uses separator marginal of parent recursively
 | 
			
		||||
  // P(C) = P(F|S) P(S)
 | 
			
		||||
  /* ************************************************************************* */
 | 
			
		||||
  template<class DERIVED, class FACTORGRAPH>
 | 
			
		||||
  /* *********************************************************************** */
 | 
			
		||||
  template <class DERIVED, class FACTORGRAPH>
 | 
			
		||||
  typename BayesTreeCliqueBase<DERIVED, FACTORGRAPH>::FactorGraphType
 | 
			
		||||
    BayesTreeCliqueBase<DERIVED, FACTORGRAPH>::separatorMarginal(Eliminate function) const
 | 
			
		||||
  {
 | 
			
		||||
  BayesTreeCliqueBase<DERIVED, FACTORGRAPH>::separatorMarginal(
 | 
			
		||||
      Eliminate function) const {
 | 
			
		||||
    gttic(BayesTreeCliqueBase_separatorMarginal);
 | 
			
		||||
    // Check if the Separator marginal was already calculated
 | 
			
		||||
    if (!cachedSeparatorMarginal_)
 | 
			
		||||
    {
 | 
			
		||||
    if (!cachedSeparatorMarginal_) {
 | 
			
		||||
      gttic(BayesTreeCliqueBase_separatorMarginal_cachemiss);
 | 
			
		||||
 | 
			
		||||
      // If this is the root, there is no separator
 | 
			
		||||
      if (parent_.expired() /*(if we're the root)*/)
 | 
			
		||||
      {
 | 
			
		||||
      if (parent_.expired() /*(if we're the root)*/) {
 | 
			
		||||
        // we are root, return empty
 | 
			
		||||
        FactorGraphType empty;
 | 
			
		||||
        cachedSeparatorMarginal_ = empty;
 | 
			
		||||
      }
 | 
			
		||||
      else
 | 
			
		||||
      {
 | 
			
		||||
      } else {
 | 
			
		||||
        // Flatten recursion in timing outline
 | 
			
		||||
        gttoc(BayesTreeCliqueBase_separatorMarginal_cachemiss);
 | 
			
		||||
        gttoc(BayesTreeCliqueBase_separatorMarginal);
 | 
			
		||||
 | 
			
		||||
        // Obtain P(S) = \int P(Cp) = \int P(Fp|Sp) P(Sp)
 | 
			
		||||
        // initialize P(Cp) with the parent separator marginal
 | 
			
		||||
        derived_ptr parent(parent_.lock());
 | 
			
		||||
        gttoc(BayesTreeCliqueBase_separatorMarginal_cachemiss); // Flatten recursion in timing outline
 | 
			
		||||
        gttoc(BayesTreeCliqueBase_separatorMarginal);
 | 
			
		||||
        FactorGraphType p_Cp(parent->separatorMarginal(function)); // P(Sp)
 | 
			
		||||
        FactorGraphType p_Cp(parent->separatorMarginal(function));  // P(Sp)
 | 
			
		||||
 | 
			
		||||
        gttic(BayesTreeCliqueBase_separatorMarginal);
 | 
			
		||||
        gttic(BayesTreeCliqueBase_separatorMarginal_cachemiss);
 | 
			
		||||
 | 
			
		||||
        // now add the parent conditional
 | 
			
		||||
        p_Cp += parent->conditional_; // P(Fp|Sp)
 | 
			
		||||
        p_Cp += parent->conditional_;  // P(Fp|Sp)
 | 
			
		||||
 | 
			
		||||
        // The variables we want to keepSet are exactly the ones in S
 | 
			
		||||
        KeyVector indicesS(this->conditional()->beginParents(), this->conditional()->endParents());
 | 
			
		||||
        cachedSeparatorMarginal_ = *p_Cp.marginalMultifrontalBayesNet(Ordering(indicesS), function);
 | 
			
		||||
        KeyVector indicesS(this->conditional()->beginParents(),
 | 
			
		||||
                           this->conditional()->endParents());
 | 
			
		||||
        auto separatorMarginal =
 | 
			
		||||
            p_Cp.marginalMultifrontalBayesNet(Ordering(indicesS), function);
 | 
			
		||||
        cachedSeparatorMarginal_.reset(*separatorMarginal);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // return the shortcut P(S||B)
 | 
			
		||||
    return *cachedSeparatorMarginal_; // return the cached version
 | 
			
		||||
    return *cachedSeparatorMarginal_;  // return the cached version
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /* ************************************************************************* */
 | 
			
		||||
  // marginal2, uses separator marginal of parent recursively
 | 
			
		||||
  /* *********************************************************************** */
 | 
			
		||||
  // marginal2, uses separator marginal of parent
 | 
			
		||||
  // P(C) = P(F|S) P(S)
 | 
			
		||||
  /* ************************************************************************* */
 | 
			
		||||
  template<class DERIVED, class FACTORGRAPH>
 | 
			
		||||
  /* *********************************************************************** */
 | 
			
		||||
  template <class DERIVED, class FACTORGRAPH>
 | 
			
		||||
  typename BayesTreeCliqueBase<DERIVED, FACTORGRAPH>::FactorGraphType
 | 
			
		||||
    BayesTreeCliqueBase<DERIVED, FACTORGRAPH>::marginal2(Eliminate function) const
 | 
			
		||||
  {
 | 
			
		||||
  BayesTreeCliqueBase<DERIVED, FACTORGRAPH>::marginal2(
 | 
			
		||||
      Eliminate function) const {
 | 
			
		||||
    gttic(BayesTreeCliqueBase_marginal2);
 | 
			
		||||
    // initialize with separator marginal P(S)
 | 
			
		||||
    FactorGraphType p_C = this->separatorMarginal(function);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -65,6 +65,8 @@ namespace gtsam {
 | 
			
		|||
    Conditional(size_t nrFrontals) : nrFrontals_(nrFrontals) {}
 | 
			
		||||
 | 
			
		||||
    /// @}
 | 
			
		||||
 | 
			
		||||
  public:
 | 
			
		||||
    /// @name Testable
 | 
			
		||||
    /// @{
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -76,7 +78,6 @@ namespace gtsam {
 | 
			
		|||
 | 
			
		||||
    /// @}
 | 
			
		||||
 | 
			
		||||
  public:
 | 
			
		||||
    /// @name Standard Interface
 | 
			
		||||
    /// @{
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue