Add python example for CombinedImuFactor
parent
843f53c6cc
commit
090fb4e275
|
@ -0,0 +1,251 @@
|
|||
"""
|
||||
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
|
||||
See LICENSE for the license information
|
||||
|
||||
A script validating and demonstrating the CobiendImuFactor inference.
|
||||
|
||||
Author: Varun Agrawal
|
||||
"""
|
||||
|
||||
# pylint: disable=no-name-in-module,unused-import,arguments-differ,import-error,wrong-import-order
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import argparse
|
||||
import math
|
||||
|
||||
import gtsam
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gtsam.symbol_shorthand import B, V, X
|
||||
from gtsam.utils.plot import plot_pose3
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
|
||||
from PreintegrationExample import POSES_FIG, PreintegrationExample
|
||||
|
||||
GRAVITY = 9.81
|
||||
|
||||
np.set_printoptions(precision=3, suppress=True)
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
"""Parse command line arguments."""
|
||||
parser = argparse.ArgumentParser("CombinedImuFactorExample.py")
|
||||
parser.add_argument("--twist_scenario",
|
||||
default="sick_twist",
|
||||
choices=("zero_twist", "forward_twist", "loop_twist",
|
||||
"sick_twist"))
|
||||
parser.add_argument("--time",
|
||||
"-T",
|
||||
default=12,
|
||||
type=int,
|
||||
help="Total navigation time in seconds")
|
||||
parser.add_argument("--compute_covariances",
|
||||
default=False,
|
||||
action='store_true')
|
||||
parser.add_argument("--verbose", default=False, action='store_true')
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
class CombinedImuFactorExample(PreintegrationExample):
|
||||
"""Class to run example of the Imu Factor."""
|
||||
def __init__(self, twist_scenario: str = "sick_twist"):
|
||||
self.velocity = np.array([2, 0, 0])
|
||||
self.priorNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1)
|
||||
self.velNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
|
||||
self.biasNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.001)
|
||||
|
||||
# Choose one of these twists to change scenario:
|
||||
twist_scenarios = dict(
|
||||
zero_twist=(np.zeros(3), np.zeros(3)),
|
||||
forward_twist=(np.zeros(3), self.velocity),
|
||||
loop_twist=(np.array([0, -math.radians(30), 0]), self.velocity),
|
||||
sick_twist=(np.array([math.radians(30), -math.radians(30),
|
||||
0]), self.velocity))
|
||||
|
||||
accBias = np.array([-0.3, 0.1, 0.2])
|
||||
gyroBias = np.array([0.1, 0.3, -0.1])
|
||||
bias = gtsam.imuBias.ConstantBias(accBias, gyroBias)
|
||||
|
||||
params = gtsam.PreintegrationCombinedParams.MakeSharedU(GRAVITY)
|
||||
|
||||
# Some arbitrary noise sigmas
|
||||
gyro_sigma = 1e-3
|
||||
accel_sigma = 1e-3
|
||||
I_3x3 = np.eye(3)
|
||||
params.setGyroscopeCovariance(gyro_sigma**2 * I_3x3)
|
||||
params.setAccelerometerCovariance(accel_sigma**2 * I_3x3)
|
||||
params.setIntegrationCovariance(1e-7**2 * I_3x3)
|
||||
|
||||
dt = 1e-2
|
||||
super(CombinedImuFactorExample,
|
||||
self).__init__(twist_scenarios[twist_scenario], bias, params, dt)
|
||||
|
||||
def addPrior(self, i: int, graph: gtsam.NonlinearFactorGraph):
|
||||
"""Add a prior on the navigation state at time `i`."""
|
||||
state = self.scenario.navState(i)
|
||||
graph.push_back(
|
||||
gtsam.PriorFactorPose3(X(i), state.pose(), self.priorNoise))
|
||||
graph.push_back(
|
||||
gtsam.PriorFactorVector(V(i), state.velocity(), self.velNoise))
|
||||
graph.push_back(
|
||||
gtsam.PriorFactorConstantBias(B(i), self.actualBias,
|
||||
self.biasNoise))
|
||||
|
||||
def optimize(self, graph: gtsam.NonlinearFactorGraph,
|
||||
initial: gtsam.Values):
|
||||
"""Optimize using Levenberg-Marquardt optimization."""
|
||||
params = gtsam.LevenbergMarquardtParams()
|
||||
params.setVerbosityLM("SUMMARY")
|
||||
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
|
||||
result = optimizer.optimize()
|
||||
return result
|
||||
|
||||
def plot(self,
|
||||
values: gtsam.Values,
|
||||
title: str = "Estimated Trajectory",
|
||||
fignum: int = POSES_FIG + 1,
|
||||
show: bool = False):
|
||||
"""
|
||||
Plot poses in values.
|
||||
|
||||
Args:
|
||||
values: The values object with the poses to plot.
|
||||
title: The title of the plot.
|
||||
fignum: The matplotlib figure number.
|
||||
POSES_FIG is a value from the PreintegrationExample
|
||||
which we simply increment to generate a new figure.
|
||||
show: Flag indicating whether to display the figure.
|
||||
"""
|
||||
i = 0
|
||||
while values.exists(X(i)):
|
||||
pose_i = values.atPose3(X(i))
|
||||
plot_pose3(fignum, pose_i, 1)
|
||||
i += 1
|
||||
plt.title(title)
|
||||
|
||||
gtsam.utils.plot.set_axes_equal(fignum)
|
||||
|
||||
i = 0
|
||||
while values.exists(B(i)):
|
||||
print("Bias Value {0}".format(i), values.atConstantBias(B(i)))
|
||||
i += 1
|
||||
|
||||
plt.ioff()
|
||||
|
||||
if show:
|
||||
plt.show()
|
||||
|
||||
def run(self,
|
||||
T: int = 12,
|
||||
compute_covariances: bool = False,
|
||||
verbose: bool = True):
|
||||
"""
|
||||
Main runner.
|
||||
|
||||
Args:
|
||||
T: Total trajectory time.
|
||||
compute_covariances: Flag indicating whether to compute marginal covariances.
|
||||
verbose: Flag indicating if printing should be verbose.
|
||||
"""
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
|
||||
# initialize data structure for pre-integrated IMU measurements
|
||||
pim = gtsam.PreintegratedCombinedMeasurements(self.params,
|
||||
self.actualBias)
|
||||
|
||||
num_poses = T # assumes 1 factor per second
|
||||
initial = gtsam.Values()
|
||||
|
||||
# simulate the loop
|
||||
i = 0 # state index
|
||||
initial_state_i = self.scenario.navState(0)
|
||||
initial.insert(X(i), initial_state_i.pose())
|
||||
initial.insert(V(i), initial_state_i.velocity())
|
||||
initial.insert(B(i), self.actualBias)
|
||||
|
||||
# add prior on beginning
|
||||
self.addPrior(0, graph)
|
||||
|
||||
for k, t in enumerate(np.arange(0, T, self.dt)):
|
||||
# get measurements and add them to PIM
|
||||
measuredOmega = self.runner.measuredAngularVelocity(t)
|
||||
measuredAcc = self.runner.measuredSpecificForce(t)
|
||||
pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt)
|
||||
|
||||
# Plot IMU many times
|
||||
if k % 10 == 0:
|
||||
self.plotImu(t, measuredOmega, measuredAcc)
|
||||
|
||||
if (k + 1) % int(1 / self.dt) == 0:
|
||||
# Plot every second
|
||||
self.plotGroundTruthPose(t, scale=1)
|
||||
plt.title("Ground Truth Trajectory")
|
||||
|
||||
# create IMU factor every second
|
||||
factor = gtsam.CombinedImuFactor(X(i), V(i), X(i + 1),
|
||||
V(i + 1), B(i), B(i + 1), pim)
|
||||
graph.push_back(factor)
|
||||
|
||||
if verbose:
|
||||
print(factor)
|
||||
print(pim.predict(initial_state_i, self.actualBias))
|
||||
|
||||
pim.resetIntegration()
|
||||
|
||||
rotationNoise = gtsam.Rot3.Expmap(np.random.randn(3) * 0.1)
|
||||
translationNoise = gtsam.Point3(*np.random.randn(3) * 1)
|
||||
poseNoise = gtsam.Pose3(rotationNoise, translationNoise)
|
||||
|
||||
actual_state_i = self.scenario.navState(t + self.dt)
|
||||
print("Actual state at {0}:\n{1}".format(
|
||||
t + self.dt, actual_state_i))
|
||||
|
||||
noisy_state_i = gtsam.NavState(
|
||||
actual_state_i.pose().compose(poseNoise),
|
||||
actual_state_i.velocity() + np.random.randn(3) * 0.1)
|
||||
noisy_bias_i = self.actualBias + gtsam.imuBias.ConstantBias(
|
||||
np.random.randn(3) * 0.1,
|
||||
np.random.randn(3) * 0.1)
|
||||
|
||||
initial.insert(X(i + 1), noisy_state_i.pose())
|
||||
initial.insert(V(i + 1), noisy_state_i.velocity())
|
||||
initial.insert(B(i + 1), noisy_bias_i)
|
||||
i += 1
|
||||
|
||||
# add priors on end
|
||||
self.addPrior(num_poses - 1, graph)
|
||||
|
||||
initial.print("Initial values:")
|
||||
|
||||
result = self.optimize(graph, initial)
|
||||
|
||||
result.print("Optimized values:")
|
||||
print("------------------")
|
||||
print("Initial Error =", graph.error(initial))
|
||||
print("Final Error =", graph.error(result))
|
||||
print("------------------")
|
||||
|
||||
if compute_covariances:
|
||||
# Calculate and print marginal covariances
|
||||
marginals = gtsam.Marginals(graph, result)
|
||||
print("Covariance on bias:\n",
|
||||
marginals.marginalCovariance(BIAS_KEY))
|
||||
for i in range(num_poses):
|
||||
print("Covariance on pose {}:\n{}\n".format(
|
||||
i, marginals.marginalCovariance(X(i))))
|
||||
print("Covariance on vel {}:\n{}\n".format(
|
||||
i, marginals.marginalCovariance(V(i))))
|
||||
|
||||
self.plot(result, show=True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
|
||||
CombinedImuFactorExample(args.twist_scenario).run(args.time,
|
||||
args.compute_covariances,
|
||||
args.verbose)
|
Loading…
Reference in New Issue