Moved functors to Matrix.h, without Expression sugar
							parent
							
								
									01ed8810a0
								
							
						
					
					
						commit
						063e0a47ee
					
				|  | @ -21,15 +21,17 @@ | |||
| // \callgraph
 | ||||
| 
 | ||||
| #pragma once | ||||
| #include <gtsam/base/OptionalJacobian.h> | ||||
| #include <gtsam/base/Vector.h> | ||||
| #include <gtsam/config.h>      // Configuration from CMake | ||||
| 
 | ||||
| #include <boost/math/special_functions/fpclassify.hpp> | ||||
| #include <Eigen/Core> | ||||
| #include <Eigen/Cholesky> | ||||
| #include <Eigen/LU> | ||||
| #include <boost/format.hpp> | ||||
| #include <boost/function.hpp> | ||||
| #include <boost/tuple/tuple.hpp> | ||||
| #include <boost/math/special_functions/fpclassify.hpp> | ||||
| 
 | ||||
| 
 | ||||
| /**
 | ||||
|  | @ -532,6 +534,75 @@ GTSAM_EXPORT Matrix expm(const Matrix& A, size_t K=7); | |||
| 
 | ||||
| std::string formatMatrixIndented(const std::string& label, const Matrix& matrix, bool makeVectorHorizontal = false); | ||||
| 
 | ||||
| /**
 | ||||
|  * Functor that implements multiplication of a vector b with the inverse of a | ||||
|  * matrix A. The derivatives are inspired by Mike Giles' "An extended collection | ||||
|  * of matrix derivative results for forward and reverse mode algorithmic | ||||
|  * differentiation", at https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf | ||||
|  */ | ||||
| template <int N> | ||||
| struct MultiplyWithInverse { | ||||
|   typedef Eigen::Matrix<double, N, 1> VectorN; | ||||
|   typedef Eigen::Matrix<double, N, N> MatrixN; | ||||
| 
 | ||||
|   /// A.inverse() * b, with optional derivatives
 | ||||
|   VectorN operator()(const MatrixN& A, const VectorN& b, | ||||
|                      OptionalJacobian<N, N* N> H1 = boost::none, | ||||
|                      OptionalJacobian<N, N> H2 = boost::none) const { | ||||
|     const MatrixN invA = A.inverse(); | ||||
|     const VectorN c = invA * b; | ||||
|     // The derivative in A is just -[c[0]*invA c[1]*invA ... c[N-1]*invA]
 | ||||
|     if (H1) | ||||
|       for (size_t j = 0; j < N; j++) | ||||
|         H1->template middleCols<N>(N * j) = -c[j] * invA; | ||||
|     // The derivative in b is easy, as invA*b is just a linear map:
 | ||||
|     if (H2) *H2 = invA; | ||||
|     return c; | ||||
|   } | ||||
| }; | ||||
| 
 | ||||
| /**
 | ||||
|  * Functor that implements multiplication with the inverse of a matrix, itself | ||||
|  * the result of a function f. It turn out we only need the derivatives of the | ||||
|  * operator phi(a): b -> f(a) * b | ||||
|  */ | ||||
| template <typename T, int N> | ||||
| struct MultiplyWithInverseFunction { | ||||
|   enum { M = traits<T>::dimension }; | ||||
|   typedef Eigen::Matrix<double, N, 1> VectorN; | ||||
|   typedef Eigen::Matrix<double, N, N> MatrixN; | ||||
| 
 | ||||
|   // The function phi should calculate f(a)*b, with derivatives in a and b.
 | ||||
|   // Naturally, the derivative in b is f(a).
 | ||||
|   typedef boost::function<VectorN( | ||||
|       const T&, const VectorN&, OptionalJacobian<N, M>, OptionalJacobian<N, N>)> | ||||
|       Operator; | ||||
| 
 | ||||
|   /// Construct with function as explained above
 | ||||
|   MultiplyWithInverseFunction(const Operator& phi) : phi_(phi) {} | ||||
| 
 | ||||
|   /// f(a).inverse() * b, with optional derivatives
 | ||||
|   VectorN operator()(const T& a, const VectorN& b, | ||||
|                      OptionalJacobian<N, M> H1 = boost::none, | ||||
|                      OptionalJacobian<N, N> H2 = boost::none) const { | ||||
|     MatrixN A; | ||||
|     phi_(a, b, boost::none, A);  // get A = f(a) by calling f once
 | ||||
|     const MatrixN invA = A.inverse(); | ||||
|     const VectorN c = invA * b; | ||||
| 
 | ||||
|     if (H1) { | ||||
|       Eigen::Matrix<double, N, M> H; | ||||
|       phi_(a, c, H, boost::none);  // get derivative H of forward mapping
 | ||||
|       *H1 = -invA* H; | ||||
|     } | ||||
|     if (H2) *H2 = invA; | ||||
|     return c; | ||||
|   } | ||||
| 
 | ||||
|  private: | ||||
|   const Operator phi_; | ||||
| }; | ||||
| 
 | ||||
| } // namespace gtsam
 | ||||
| 
 | ||||
| #include <boost/serialization/nvp.hpp> | ||||
|  |  | |||
|  | @ -24,90 +24,6 @@ Expression<T> compose(const Expression<T>& t1, const Expression<T>& t2) { | |||
|   return Expression<T>(traits<T>::Compose, t1, t2); | ||||
| } | ||||
| 
 | ||||
| /**
 | ||||
|  * Functor that implements multiplication of a vector b with the inverse of a | ||||
|  * matrix A. The derivatives are inspired by Mike Giles' "An extended collection | ||||
|  * of matrix derivative results for forward and reverse mode algorithmic | ||||
|  * differentiation", at https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf | ||||
|  * | ||||
|  * Usage example: | ||||
|   *  Expression<Vector3> expression = MultiplyWithInverse<3>()(Key(0), Key(1)); | ||||
|  */ | ||||
| template <int N> | ||||
| struct MultiplyWithInverse { | ||||
|   typedef Eigen::Matrix<double, N, 1> VectorN; | ||||
|   typedef Eigen::Matrix<double, N, N> MatrixN; | ||||
| 
 | ||||
|   /// A.inverse() * b, with optional derivatives
 | ||||
|   VectorN operator()(const MatrixN& A, const VectorN& b, | ||||
|                      OptionalJacobian<N, N* N> H1 = boost::none, | ||||
|                      OptionalJacobian<N, N> H2 = boost::none) const { | ||||
|     const MatrixN invA = A.inverse(); | ||||
|     const VectorN c = invA * b; | ||||
|     // The derivative in A is just -[c[0]*invA c[1]*invA ... c[N-1]*invA]
 | ||||
|     if (H1) | ||||
|       for (size_t j = 0; j < N; j++) | ||||
|         H1->template middleCols<N>(N * j) = -c[j] * invA; | ||||
|     // The derivative in b is easy, as invA*b is just a linear map:
 | ||||
|     if (H2) *H2 = invA; | ||||
|     return c; | ||||
|   } | ||||
| 
 | ||||
|   /// Create expression
 | ||||
|   Expression<VectorN> operator()(const Expression<MatrixN>& A_, | ||||
|                                  const Expression<VectorN>& b_) const { | ||||
|     return Expression<VectorN>(*this, A_, b_); | ||||
|   } | ||||
| }; | ||||
| 
 | ||||
| /**
 | ||||
|  * Functor that implements multiplication with the inverse of a matrix, itself | ||||
|  * the result of a function f. It turn out we only need the derivatives of the | ||||
|  * operator phi(a): b -> f(a) * b | ||||
|  */ | ||||
| template <typename T, int N> | ||||
| struct MultiplyWithInverseFunction { | ||||
|   enum { M = traits<T>::dimension }; | ||||
|   typedef Eigen::Matrix<double, N, 1> VectorN; | ||||
|   typedef Eigen::Matrix<double, N, N> MatrixN; | ||||
| 
 | ||||
|   // The function phi should calculate f(a)*b, with derivatives in a and b.
 | ||||
|   // Naturally, the derivative in b is f(a).
 | ||||
|   typedef boost::function<VectorN( | ||||
|       const T&, const VectorN&, OptionalJacobian<N, M>, OptionalJacobian<N, N>)> | ||||
|       Operator; | ||||
| 
 | ||||
|   /// Construct with function as explained above
 | ||||
|   MultiplyWithInverseFunction(const Operator& phi) : phi_(phi) {} | ||||
| 
 | ||||
|   /// f(a).inverse() * b, with optional derivatives
 | ||||
|   VectorN operator()(const T& a, const VectorN& b, | ||||
|                      OptionalJacobian<N, M> H1 = boost::none, | ||||
|                      OptionalJacobian<N, N> H2 = boost::none) const { | ||||
|     MatrixN A; | ||||
|     phi_(a, b, boost::none, A);  // get A = f(a) by calling f once
 | ||||
|     const MatrixN invA = A.inverse(); | ||||
|     const VectorN c = invA * b; | ||||
| 
 | ||||
|     if (H1) { | ||||
|       Eigen::Matrix<double, N, M> H; | ||||
|       phi_(a, c, H, boost::none);  // get derivative H of forward mapping
 | ||||
|       *H1 = -invA* H; | ||||
|     } | ||||
|     if (H2) *H2 = invA; | ||||
|     return c; | ||||
|   } | ||||
| 
 | ||||
|   /// Create expression
 | ||||
|   Expression<VectorN> operator()(const Expression<T>& a_, | ||||
|                                  const Expression<VectorN>& b_) const { | ||||
|     return Expression<VectorN>(*this, a_, b_); | ||||
|   } | ||||
| 
 | ||||
|  private: | ||||
|   const Operator phi_; | ||||
| }; | ||||
| 
 | ||||
| // Some typedefs
 | ||||
| typedef Expression<double> double_; | ||||
| typedef Expression<Vector1> Vector1_; | ||||
|  |  | |||
|  | @ -605,7 +605,7 @@ TEST(ExpressionFactor, MultiplyWithInverse) { | |||
|   auto model = noiseModel::Isotropic::Sigma(3, 1); | ||||
| 
 | ||||
|   // Create expression
 | ||||
|   auto f_expr = MultiplyWithInverse<3>()(Key(0), Key(1)); | ||||
|   Vector3_ f_expr(MultiplyWithInverse<3>(), Expression<Matrix3>(0), Vector3_(1)); | ||||
| 
 | ||||
|   // Check derivatives
 | ||||
|   Values values; | ||||
|  | @ -638,7 +638,8 @@ TEST(ExpressionFactor, MultiplyWithInverseFunction) { | |||
|   auto model = noiseModel::Isotropic::Sigma(3, 1); | ||||
| 
 | ||||
|   using test_operator::f; | ||||
|   auto f_expr = MultiplyWithInverseFunction<Point2, 3>(f)(Key(0), Key(1)); | ||||
|   Vector3_ f_expr(MultiplyWithInverseFunction<Point2, 3>(f), | ||||
|                   Expression<Point2>(0), Vector3_(1)); | ||||
| 
 | ||||
|   // Check derivatives
 | ||||
|   Point2 a(1, 2); | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue