77 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Matlab
		
	
	
		
		
			
		
	
	
			77 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Matlab
		
	
	
|  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|  | % GTSAM Copyright 2010, Georgia Tech Research Corporation,  | ||
|  | % Atlanta, Georgia 30332-0415 | ||
|  | % All Rights Reserved | ||
|  | % Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  | %  | ||
|  | % See LICENSE for the license information | ||
|  | % | ||
|  | % @brief Simple robotics example using the pre-built planar SLAM domain | ||
|  | % @author Alex Cunningham | ||
|  | % @author Frank Dellaert | ||
|  | % @author Chris Beall | ||
|  | % @author Vadim Indelman | ||
|  | % @author Can Erdogan | ||
|  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|  | 
 | ||
|  | %% Assumptions | ||
|  | %  - All values are axis aligned | ||
|  | %  - Robot poses are facing along the X axis (horizontal, to the right in images) | ||
|  | %  - We have full odometry for measurements | ||
|  | %  - The robot is on a grid, moving 2 meters each step | ||
|  | 
 | ||
|  | %% Create graph container and add factors to it | ||
|  | graph = pose2SLAMGraph; | ||
|  | 
 | ||
|  | %% Add prior | ||
|  | % gaussian for prior | ||
|  | priorNoise = gtsamSharedNoiseModel_Sigmas([0.3; 0.3; 0.1]); | ||
|  | priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin | ||
|  | graph.addPrior(1, priorMean, priorNoise); % add directly to graph | ||
|  | 
 | ||
|  | %% Add odometry | ||
|  | % general noisemodel for odometry | ||
|  | odometryNoise = gtsamSharedNoiseModel_Sigmas([0.2; 0.2; 0.1]); | ||
|  | odometry = gtsamPose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case) | ||
|  | graph.addOdometry(1, 2, odometry, odometryNoise); | ||
|  | graph.addOdometry(2, 3, odometry, odometryNoise); | ||
|  | 
 | ||
|  | %% Add measurements | ||
|  | % general noisemodel for measurements | ||
|  | measurementNoise = gtsamSharedNoiseModel_Sigmas([0.1; 0.2]); | ||
|  | 
 | ||
|  | % print | ||
|  | graph.print('full graph'); | ||
|  | 
 | ||
|  | %% Initialize to noisy points | ||
|  | initialEstimate = pose2SLAMValues; | ||
|  | initialEstimate.insertPose(1, gtsamPose2(0.5, 0.0, 0.2)); | ||
|  | initialEstimate.insertPose(2, gtsamPose2(2.3, 0.1,-0.2)); | ||
|  | initialEstimate.insertPose(3, gtsamPose2(4.1, 0.1, 0.1)); | ||
|  | 
 | ||
|  | initialEstimate.print('initial estimate'); | ||
|  | 
 | ||
|  | %% set up solver, choose ordering and optimize | ||
|  | %params = gtsamNonlinearOptimizationParameters_newDecreaseThresholds(1e-15, 1e-15); | ||
|  | % | ||
|  | %ord = graph.orderingCOLAMD(initialEstimate); | ||
|  | % | ||
|  | %result = pose2SLAMOptimizer(graph,initialEstimate,ord,params);                       | ||
|  | %result.print('final result'); | ||
|  | 
 | ||
|  | %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd | ||
|  | result = graph.optimize(initialEstimate); | ||
|  | result.print('final result'); | ||
|  | 
 | ||
|  | %% Get the corresponding dense matrix | ||
|  | ord = graph.orderingCOLAMD(result); | ||
|  | gfg = graph.linearize(result,ord); | ||
|  | denseAb = gfg.denseJacobian; | ||
|  | 
 | ||
|  | %% Get sparse matrix A and RHS b | ||
|  | IJS = gfg.sparseJacobian_(); | ||
|  | Ab=sparse(IJS(1,:),IJS(2,:),IJS(3,:)); | ||
|  | A = Ab(:,1:end-1); | ||
|  | b = full(Ab(:,end)); | ||
|  | spy(A); |