gtsam/matlab/examples/OdometryExample.m

64 lines
2.2 KiB
Matlab
Raw Normal View History

2012-05-22 05:53:26 +08:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
% Atlanta, Georgia 30332-0415
% All Rights Reserved
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% See LICENSE for the license information
%
% @brief Example of a simple 2D localization example
% @author Frank Dellaert
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Assumptions
% - Robot poses are facing along the X axis (horizontal, to the right in 2D)
% - The robot moves 2 meters each step
% - The robot is on a grid, moving 2 meters each step
%% Create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph)
graph = pose2SLAM.Graph;
2012-05-22 05:53:26 +08:00
%% Add a Gaussian prior on pose x_1
import gtsam.*
priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin
priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]); % 30cm std on x,y, 0.1 rad on theta
graph.addPosePrior(1, priorMean, priorNoise); % add directly to graph
2012-05-22 05:53:26 +08:00
%% Add two odometry factors
import gtsam.*
odometry = Pose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); % 20cm std on x,y, 0.1 rad on theta
graph.addRelativePose(1, 2, odometry, odometryNoise);
graph.addRelativePose(2, 3, odometry, odometryNoise);
2012-05-22 05:53:26 +08:00
%% print
graph.print(sprintf('\nFactor graph:\n'));
%% Initialize to noisy points
import gtsam.*
initialEstimate = pose2SLAM.Values;
initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2));
initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2));
initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1));
2012-05-22 05:53:26 +08:00
initialEstimate.print(sprintf('\nInitial estimate:\n '));
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
result = graph.optimize(initialEstimate,1);
2012-05-22 05:53:26 +08:00
result.print(sprintf('\nFinal result:\n '));
2012-05-23 20:35:48 +08:00
%% Plot Covariance Ellipses
import gtsam.*
2012-06-12 12:38:05 +08:00
cla;
X=result.poses();
plot(X(:,1),X(:,2),'k*-'); hold on
2012-06-05 11:51:21 +08:00
marginals = graph.marginals(result);
P={};
2012-06-05 11:51:21 +08:00
for i=1:result.size()
pose_i = result.pose(i);
P{i}=marginals.marginalCovariance(i);
plotPose2(pose_i,'g',P{i})
2012-05-23 20:35:48 +08:00
end
2012-06-12 13:29:25 +08:00
axis([-0.6 4.8 -1 1])
2012-06-05 11:51:21 +08:00
axis equal
2012-06-27 02:52:27 +08:00
view(2)