315 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
		
		
			
		
	
	
			315 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
| 
								 | 
							
								// Ceres Solver - A fast non-linear least squares minimizer
							 | 
						||
| 
								 | 
							
								// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
							 | 
						||
| 
								 | 
							
								// http://code.google.com/p/ceres-solver/
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Redistribution and use in source and binary forms, with or without
							 | 
						||
| 
								 | 
							
								// modification, are permitted provided that the following conditions are met:
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// * Redistributions of source code must retain the above copyright notice,
							 | 
						||
| 
								 | 
							
								//   this list of conditions and the following disclaimer.
							 | 
						||
| 
								 | 
							
								// * Redistributions in binary form must reproduce the above copyright notice,
							 | 
						||
| 
								 | 
							
								//   this list of conditions and the following disclaimer in the documentation
							 | 
						||
| 
								 | 
							
								//   and/or other materials provided with the distribution.
							 | 
						||
| 
								 | 
							
								// * Neither the name of Google Inc. nor the names of its contributors may be
							 | 
						||
| 
								 | 
							
								//   used to endorse or promote products derived from this software without
							 | 
						||
| 
								 | 
							
								//   specific prior written permission.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
							 | 
						||
| 
								 | 
							
								// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
							 | 
						||
| 
								 | 
							
								// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
							 | 
						||
| 
								 | 
							
								// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
							 | 
						||
| 
								 | 
							
								// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
							 | 
						||
| 
								 | 
							
								// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
							 | 
						||
| 
								 | 
							
								// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
							 | 
						||
| 
								 | 
							
								// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
							 | 
						||
| 
								 | 
							
								// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
							 | 
						||
| 
								 | 
							
								// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
							 | 
						||
| 
								 | 
							
								// POSSIBILITY OF SUCH DAMAGE.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Author: keir@google.com (Keir Mierle)
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Computation of the Jacobian matrix for vector-valued functions of multiple
							 | 
						||
| 
								 | 
							
								// variables, using automatic differentiation based on the implementation of
							 | 
						||
| 
								 | 
							
								// dual numbers in jet.h. Before reading the rest of this file, it is adivsable
							 | 
						||
| 
								 | 
							
								// to read jet.h's header comment in detail.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// The helper wrapper AutoDiff::Differentiate() computes the jacobian of
							 | 
						||
| 
								 | 
							
								// functors with templated operator() taking this form:
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//   struct F {
							 | 
						||
| 
								 | 
							
								//     template<typename T>
							 | 
						||
| 
								 | 
							
								//     bool operator()(const T *x, const T *y, ..., T *z) {
							 | 
						||
| 
								 | 
							
								//       // Compute z[] based on x[], y[], ...
							 | 
						||
| 
								 | 
							
								//       // return true if computation succeeded, false otherwise.
							 | 
						||
| 
								 | 
							
								//     }
							 | 
						||
| 
								 | 
							
								//   };
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// All inputs and outputs may be vector-valued.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// To understand how jets are used to compute the jacobian, a
							 | 
						||
| 
								 | 
							
								// picture may help. Consider a vector-valued function, F, returning 3
							 | 
						||
| 
								 | 
							
								// dimensions and taking a vector-valued parameter of 4 dimensions:
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//     y            x
							 | 
						||
| 
								 | 
							
								//   [ * ]    F   [ * ]
							 | 
						||
| 
								 | 
							
								//   [ * ]  <---  [ * ]
							 | 
						||
| 
								 | 
							
								//   [ * ]        [ * ]
							 | 
						||
| 
								 | 
							
								//                [ * ]
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Similar to the 2-parameter example for f described in jet.h, computing the
							 | 
						||
| 
								 | 
							
								// jacobian dy/dx is done by substutiting a suitable jet object for x and all
							 | 
						||
| 
								 | 
							
								// intermediate steps of the computation of F. Since x is has 4 dimensions, use
							 | 
						||
| 
								 | 
							
								// a Jet<double, 4>.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Before substituting a jet object for x, the dual components are set
							 | 
						||
| 
								 | 
							
								// appropriately for each dimension of x:
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//          y                       x
							 | 
						||
| 
								 | 
							
								//   [ * | * * * * ]    f   [ * | 1 0 0 0 ]   x0
							 | 
						||
| 
								 | 
							
								//   [ * | * * * * ]  <---  [ * | 0 1 0 0 ]   x1
							 | 
						||
| 
								 | 
							
								//   [ * | * * * * ]        [ * | 0 0 1 0 ]   x2
							 | 
						||
| 
								 | 
							
								//         ---+---          [ * | 0 0 0 1 ]   x3
							 | 
						||
| 
								 | 
							
								//            |                   ^ ^ ^ ^
							 | 
						||
| 
								 | 
							
								//          dy/dx                 | | | +----- infinitesimal for x3
							 | 
						||
| 
								 | 
							
								//                                | | +------- infinitesimal for x2
							 | 
						||
| 
								 | 
							
								//                                | +--------- infinitesimal for x1
							 | 
						||
| 
								 | 
							
								//                                +----------- infinitesimal for x0
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// The reason to set the internal 4x4 submatrix to the identity is that we wish
							 | 
						||
| 
								 | 
							
								// to take the derivative of y separately with respect to each dimension of x.
							 | 
						||
| 
								 | 
							
								// Each column of the 4x4 identity is therefore for a single component of the
							 | 
						||
| 
								 | 
							
								// independent variable x.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Then the jacobian of the mapping, dy/dx, is the 3x4 sub-matrix of the
							 | 
						||
| 
								 | 
							
								// extended y vector, indicated in the above diagram.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Functors with multiple parameters
							 | 
						||
| 
								 | 
							
								// ---------------------------------
							 | 
						||
| 
								 | 
							
								// In practice, it is often convenient to use a function f of two or more
							 | 
						||
| 
								 | 
							
								// vector-valued parameters, for example, x[3] and z[6]. Unfortunately, the jet
							 | 
						||
| 
								 | 
							
								// framework is designed for a single-parameter vector-valued input. The wrapper
							 | 
						||
| 
								 | 
							
								// in this file addresses this issue adding support for functions with one or
							 | 
						||
| 
								 | 
							
								// more parameter vectors.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// To support multiple parameters, all the parameter vectors are concatenated
							 | 
						||
| 
								 | 
							
								// into one and treated as a single parameter vector, except that since the
							 | 
						||
| 
								 | 
							
								// functor expects different inputs, we need to construct the jets as if they
							 | 
						||
| 
								 | 
							
								// were part of a single parameter vector. The extended jets are passed
							 | 
						||
| 
								 | 
							
								// separately for each parameter.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// For example, consider a functor F taking two vector parameters, p[2] and
							 | 
						||
| 
								 | 
							
								// q[3], and producing an output y[4]:
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//   struct F {
							 | 
						||
| 
								 | 
							
								//     template<typename T>
							 | 
						||
| 
								 | 
							
								//     bool operator()(const T *p, const T *q, T *z) {
							 | 
						||
| 
								 | 
							
								//       // ...
							 | 
						||
| 
								 | 
							
								//     }
							 | 
						||
| 
								 | 
							
								//   };
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// In this case, the necessary jet type is Jet<double, 5>. Here is a
							 | 
						||
| 
								 | 
							
								// visualization of the jet objects in this case:
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//          Dual components for p ----+
							 | 
						||
| 
								 | 
							
								//                                    |
							 | 
						||
| 
								 | 
							
								//                                   -+-
							 | 
						||
| 
								 | 
							
								//           y                 [ * | 1 0 | 0 0 0 ]    --- p[0]
							 | 
						||
| 
								 | 
							
								//                             [ * | 0 1 | 0 0 0 ]    --- p[1]
							 | 
						||
| 
								 | 
							
								//   [ * | . . | + + + ]         |
							 | 
						||
| 
								 | 
							
								//   [ * | . . | + + + ]         v
							 | 
						||
| 
								 | 
							
								//   [ * | . . | + + + ]  <--- F(p, q)
							 | 
						||
| 
								 | 
							
								//   [ * | . . | + + + ]            ^
							 | 
						||
| 
								 | 
							
								//         ^^^   ^^^^^              |
							 | 
						||
| 
								 | 
							
								//        dy/dp  dy/dq            [ * | 0 0 | 1 0 0 ] --- q[0]
							 | 
						||
| 
								 | 
							
								//                                [ * | 0 0 | 0 1 0 ] --- q[1]
							 | 
						||
| 
								 | 
							
								//                                [ * | 0 0 | 0 0 1 ] --- q[2]
							 | 
						||
| 
								 | 
							
								//                                            --+--
							 | 
						||
| 
								 | 
							
								//                                              |
							 | 
						||
| 
								 | 
							
								//          Dual components for q --------------+
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// where the 4x2 submatrix (marked with ".") and 4x3 submatrix (marked with "+"
							 | 
						||
| 
								 | 
							
								// of y in the above diagram are the derivatives of y with respect to p and q
							 | 
						||
| 
								 | 
							
								// respectively. This is how autodiff works for functors taking multiple vector
							 | 
						||
| 
								 | 
							
								// valued arguments (up to 6).
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// Jacobian NULL pointers
							 | 
						||
| 
								 | 
							
								// ----------------------
							 | 
						||
| 
								 | 
							
								// In general, the functions below will accept NULL pointers for all or some of
							 | 
						||
| 
								 | 
							
								// the Jacobian parameters, meaning that those Jacobians will not be computed.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifndef CERES_PUBLIC_INTERNAL_AUTODIFF_H_
							 | 
						||
| 
								 | 
							
								#define CERES_PUBLIC_INTERNAL_AUTODIFF_H_
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <stddef.h>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <gtsam_unstable/nonlinear/ceres_jet.h>
							 | 
						||
| 
								 | 
							
								#include <gtsam_unstable/nonlinear/ceres_eigen.h>
							 | 
						||
| 
								 | 
							
								#include <gtsam_unstable/nonlinear/ceres_fixed_array.h>
							 | 
						||
| 
								 | 
							
								#include <gtsam_unstable/nonlinear/ceres_variadic_evaluate.h>
							 | 
						||
| 
								 | 
							
								#define DCHECK assert
							 | 
						||
| 
								 | 
							
								#define DCHECK_GT(a,b) assert((a)>(b))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace ceres {
							 | 
						||
| 
								 | 
							
								namespace internal {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Extends src by a 1st order pertubation for every dimension and puts it in
							 | 
						||
| 
								 | 
							
								// dst. The size of src is N. Since this is also used for perturbations in
							 | 
						||
| 
								 | 
							
								// blocked arrays, offset is used to shift which part of the jet the
							 | 
						||
| 
								 | 
							
								// perturbation occurs. This is used to set up the extended x augmented by an
							 | 
						||
| 
								 | 
							
								// identity matrix. The JetT type should be a Jet type, and T should be a
							 | 
						||
| 
								 | 
							
								// numeric type (e.g. double). For example,
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								//             0   1 2   3 4 5   6 7 8
							 | 
						||
| 
								 | 
							
								//   dst[0]  [ * | . . | 1 0 0 | . . . ]
							 | 
						||
| 
								 | 
							
								//   dst[1]  [ * | . . | 0 1 0 | . . . ]
							 | 
						||
| 
								 | 
							
								//   dst[2]  [ * | . . | 0 0 1 | . . . ]
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// is what would get put in dst if N was 3, offset was 3, and the jet type JetT
							 | 
						||
| 
								 | 
							
								// was 8-dimensional.
							 | 
						||
| 
								 | 
							
								template <typename JetT, typename T, int N>
							 | 
						||
| 
								 | 
							
								inline void Make1stOrderPerturbation(int offset, const T* src, JetT* dst) {
							 | 
						||
| 
								 | 
							
								  DCHECK(src);
							 | 
						||
| 
								 | 
							
								  DCHECK(dst);
							 | 
						||
| 
								 | 
							
								  for (int j = 0; j < N; ++j) {
							 | 
						||
| 
								 | 
							
								    dst[j].a = src[j];
							 | 
						||
| 
								 | 
							
								    dst[j].v.setZero();
							 | 
						||
| 
								 | 
							
								    dst[j].v[offset + j] = T(1.0);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Takes the 0th order part of src, assumed to be a Jet type, and puts it in
							 | 
						||
| 
								 | 
							
								// dst. This is used to pick out the "vector" part of the extended y.
							 | 
						||
| 
								 | 
							
								template <typename JetT, typename T>
							 | 
						||
| 
								 | 
							
								inline void Take0thOrderPart(int M, const JetT *src, T dst) {
							 | 
						||
| 
								 | 
							
								  DCHECK(src);
							 | 
						||
| 
								 | 
							
								  for (int i = 0; i < M; ++i) {
							 | 
						||
| 
								 | 
							
								    dst[i] = src[i].a;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// Takes N 1st order parts, starting at index N0, and puts them in the M x N
							 | 
						||
| 
								 | 
							
								// matrix 'dst'. This is used to pick out the "matrix" parts of the extended y.
							 | 
						||
| 
								 | 
							
								template <typename JetT, typename T, int N0, int N>
							 | 
						||
| 
								 | 
							
								inline void Take1stOrderPart(const int M, const JetT *src, T *dst) {
							 | 
						||
| 
								 | 
							
								  DCHECK(src);
							 | 
						||
| 
								 | 
							
								  DCHECK(dst);
							 | 
						||
| 
								 | 
							
								  for (int i = 0; i < M; ++i) {
							 | 
						||
| 
								 | 
							
								    Eigen::Map<Eigen::Matrix<T, N, 1> >(dst + N * i, N) =
							 | 
						||
| 
								 | 
							
								        src[i].v.template segment<N>(N0);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// This is in a struct because default template parameters on a
							 | 
						||
| 
								 | 
							
								// function are not supported in C++03 (though it is available in
							 | 
						||
| 
								 | 
							
								// C++0x). N0 through N5 are the dimension of the input arguments to
							 | 
						||
| 
								 | 
							
								// the user supplied functor.
							 | 
						||
| 
								 | 
							
								template <typename Functor, typename T,
							 | 
						||
| 
								 | 
							
								          int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0,
							 | 
						||
| 
								 | 
							
								          int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0>
							 | 
						||
| 
								 | 
							
								struct AutoDiff {
							 | 
						||
| 
								 | 
							
								  static bool Differentiate(const Functor& functor,
							 | 
						||
| 
								 | 
							
								                            T const *const *parameters,
							 | 
						||
| 
								 | 
							
								                            int num_outputs,
							 | 
						||
| 
								 | 
							
								                            T *function_value,
							 | 
						||
| 
								 | 
							
								                            T **jacobians) {
							 | 
						||
| 
								 | 
							
								    // This block breaks the 80 column rule to keep it somewhat readable.
							 | 
						||
| 
								 | 
							
								    DCHECK_GT(num_outputs, 0);
							 | 
						||
| 
								 | 
							
								    DCHECK((!N1 && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
							 | 
						||
| 
								 | 
							
								          ((N1 > 0) && !N2 && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
							 | 
						||
| 
								 | 
							
								          ((N1 > 0) && (N2 > 0) && !N3 && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
							 | 
						||
| 
								 | 
							
								          ((N1 > 0) && (N2 > 0) && (N3 > 0) && !N4 && !N5 && !N6 && !N7 && !N8 && !N9) ||
							 | 
						||
| 
								 | 
							
								          ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && !N5 && !N6 && !N7 && !N8 && !N9) ||
							 | 
						||
| 
								 | 
							
								          ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && !N6 && !N7 && !N8 && !N9) ||
							 | 
						||
| 
								 | 
							
								          ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && !N7 && !N8 && !N9) ||
							 | 
						||
| 
								 | 
							
								          ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && !N8 && !N9) ||
							 | 
						||
| 
								 | 
							
								          ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && !N9) ||
							 | 
						||
| 
								 | 
							
								          ((N1 > 0) && (N2 > 0) && (N3 > 0) && (N4 > 0) && (N5 > 0) && (N6 > 0) && (N7 > 0) && (N8 > 0) && (N9 > 0)));
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    typedef Jet<T, N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9> JetT;
							 | 
						||
| 
								 | 
							
								    FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(
							 | 
						||
| 
								 | 
							
								        N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + num_outputs);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // These are the positions of the respective jets in the fixed array x.
							 | 
						||
| 
								 | 
							
								    const int jet0  = 0;
							 | 
						||
| 
								 | 
							
								    const int jet1  = N0;
							 | 
						||
| 
								 | 
							
								    const int jet2  = N0 + N1;
							 | 
						||
| 
								 | 
							
								    const int jet3  = N0 + N1 + N2;
							 | 
						||
| 
								 | 
							
								    const int jet4  = N0 + N1 + N2 + N3;
							 | 
						||
| 
								 | 
							
								    const int jet5  = N0 + N1 + N2 + N3 + N4;
							 | 
						||
| 
								 | 
							
								    const int jet6  = N0 + N1 + N2 + N3 + N4 + N5;
							 | 
						||
| 
								 | 
							
								    const int jet7  = N0 + N1 + N2 + N3 + N4 + N5 + N6;
							 | 
						||
| 
								 | 
							
								    const int jet8  = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7;
							 | 
						||
| 
								 | 
							
								    const int jet9  = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    const JetT *unpacked_parameters[10] = {
							 | 
						||
| 
								 | 
							
								        x.get() + jet0,
							 | 
						||
| 
								 | 
							
								        x.get() + jet1,
							 | 
						||
| 
								 | 
							
								        x.get() + jet2,
							 | 
						||
| 
								 | 
							
								        x.get() + jet3,
							 | 
						||
| 
								 | 
							
								        x.get() + jet4,
							 | 
						||
| 
								 | 
							
								        x.get() + jet5,
							 | 
						||
| 
								 | 
							
								        x.get() + jet6,
							 | 
						||
| 
								 | 
							
								        x.get() + jet7,
							 | 
						||
| 
								 | 
							
								        x.get() + jet8,
							 | 
						||
| 
								 | 
							
								        x.get() + jet9,
							 | 
						||
| 
								 | 
							
								    };
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    JetT* output = x.get() + N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define CERES_MAKE_1ST_ORDER_PERTURBATION(i)                            \
							 | 
						||
| 
								 | 
							
								    if (N ## i) {                                                       \
							 | 
						||
| 
								 | 
							
								      internal::Make1stOrderPerturbation<JetT, T, N ## i>(              \
							 | 
						||
| 
								 | 
							
								          jet ## i,                                                     \
							 | 
						||
| 
								 | 
							
								          parameters[i],                                                \
							 | 
						||
| 
								 | 
							
								          x.get() + jet ## i);                                          \
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    CERES_MAKE_1ST_ORDER_PERTURBATION(0);
							 | 
						||
| 
								 | 
							
								    CERES_MAKE_1ST_ORDER_PERTURBATION(1);
							 | 
						||
| 
								 | 
							
								    CERES_MAKE_1ST_ORDER_PERTURBATION(2);
							 | 
						||
| 
								 | 
							
								    CERES_MAKE_1ST_ORDER_PERTURBATION(3);
							 | 
						||
| 
								 | 
							
								    CERES_MAKE_1ST_ORDER_PERTURBATION(4);
							 | 
						||
| 
								 | 
							
								    CERES_MAKE_1ST_ORDER_PERTURBATION(5);
							 | 
						||
| 
								 | 
							
								    CERES_MAKE_1ST_ORDER_PERTURBATION(6);
							 | 
						||
| 
								 | 
							
								    CERES_MAKE_1ST_ORDER_PERTURBATION(7);
							 | 
						||
| 
								 | 
							
								    CERES_MAKE_1ST_ORDER_PERTURBATION(8);
							 | 
						||
| 
								 | 
							
								    CERES_MAKE_1ST_ORDER_PERTURBATION(9);
							 | 
						||
| 
								 | 
							
								#undef CERES_MAKE_1ST_ORDER_PERTURBATION
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (!VariadicEvaluate<Functor, JetT,
							 | 
						||
| 
								 | 
							
								                          N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Call(
							 | 
						||
| 
								 | 
							
								        functor, unpacked_parameters, output)) {
							 | 
						||
| 
								 | 
							
								      return false;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    internal::Take0thOrderPart(num_outputs, output, function_value);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define CERES_TAKE_1ST_ORDER_PERTURBATION(i) \
							 | 
						||
| 
								 | 
							
								    if (N ## i) { \
							 | 
						||
| 
								 | 
							
								      if (jacobians[i]) { \
							 | 
						||
| 
								 | 
							
								        internal::Take1stOrderPart<JetT, T, \
							 | 
						||
| 
								 | 
							
								                                   jet ## i, \
							 | 
						||
| 
								 | 
							
								                                   N ## i>(num_outputs, \
							 | 
						||
| 
								 | 
							
								                                           output, \
							 | 
						||
| 
								 | 
							
								                                           jacobians[i]); \
							 | 
						||
| 
								 | 
							
								      } \
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    CERES_TAKE_1ST_ORDER_PERTURBATION(0);
							 | 
						||
| 
								 | 
							
								    CERES_TAKE_1ST_ORDER_PERTURBATION(1);
							 | 
						||
| 
								 | 
							
								    CERES_TAKE_1ST_ORDER_PERTURBATION(2);
							 | 
						||
| 
								 | 
							
								    CERES_TAKE_1ST_ORDER_PERTURBATION(3);
							 | 
						||
| 
								 | 
							
								    CERES_TAKE_1ST_ORDER_PERTURBATION(4);
							 | 
						||
| 
								 | 
							
								    CERES_TAKE_1ST_ORDER_PERTURBATION(5);
							 | 
						||
| 
								 | 
							
								    CERES_TAKE_1ST_ORDER_PERTURBATION(6);
							 | 
						||
| 
								 | 
							
								    CERES_TAKE_1ST_ORDER_PERTURBATION(7);
							 | 
						||
| 
								 | 
							
								    CERES_TAKE_1ST_ORDER_PERTURBATION(8);
							 | 
						||
| 
								 | 
							
								    CERES_TAKE_1ST_ORDER_PERTURBATION(9);
							 | 
						||
| 
								 | 
							
								#undef CERES_TAKE_1ST_ORDER_PERTURBATION
							 | 
						||
| 
								 | 
							
								    return true;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}  // namespace internal
							 | 
						||
| 
								 | 
							
								}  // namespace ceres
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif  // CERES_PUBLIC_INTERNAL_AUTODIFF_H_
							 |