2025-04-27 22:40:28 +08:00
|
|
|
|
/* ----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
|
|
|
* Atlanta, Georgia 30332-0415
|
|
|
|
|
* All Rights Reserved
|
|
|
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
|
|
|
|
|
|
* See LICENSE for the license information
|
|
|
|
|
|
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
|
|
/**
|
2025-05-17 03:44:55 +08:00
|
|
|
|
* @file GEKF_Rot3Example.cpp
|
2025-04-27 22:40:28 +08:00
|
|
|
|
* @brief Left‐Invariant EKF on SO(3) with state‐dependent pitch/roll control
|
|
|
|
|
* and a single magnetometer update.
|
|
|
|
|
* @date April 25, 2025
|
|
|
|
|
* @authors Scott Baker, Matt Kielo, Frank Dellaert
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#include <gtsam/base/Matrix.h>
|
|
|
|
|
#include <gtsam/base/OptionalJacobian.h>
|
|
|
|
|
#include <gtsam/geometry/Rot3.h>
|
2025-05-07 21:55:45 +08:00
|
|
|
|
#include <gtsam/navigation/LieGroupEKF.h>
|
2025-04-27 22:40:28 +08:00
|
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
using namespace gtsam;
|
|
|
|
|
|
|
|
|
|
// --- 1) Closed‐loop dynamics f(X): xi = –k·[φx,φy,0], H = ∂xi/∂φ·Dφ ---
|
|
|
|
|
static constexpr double k = 0.5;
|
|
|
|
|
Vector3 dynamicsSO3(const Rot3& X, OptionalJacobian<3, 3> H = {}) {
|
|
|
|
|
// φ = Logmap(R), Dφ = ∂φ/∂δR
|
2025-04-28 01:35:24 +08:00
|
|
|
|
Matrix3 D_phi;
|
|
|
|
|
Vector3 phi = Rot3::Logmap(X, D_phi);
|
2025-04-27 22:40:28 +08:00
|
|
|
|
// zero out yaw
|
2025-04-28 01:35:24 +08:00
|
|
|
|
phi[2] = 0.0;
|
|
|
|
|
D_phi.row(2).setZero();
|
2025-04-27 22:40:28 +08:00
|
|
|
|
|
2025-04-28 01:35:24 +08:00
|
|
|
|
if (H) *H = -k * D_phi; // ∂(–kφ)/∂δR
|
2025-04-28 09:11:30 +08:00
|
|
|
|
return -k * phi; // xi ∈ 𝔰𝔬(3)
|
2025-04-27 22:40:28 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// --- 2) Magnetometer model: z = R⁻¹ m, H = –[z]_× ---
|
|
|
|
|
static const Vector3 m_world(0, 0, -1);
|
|
|
|
|
Vector3 h_mag(const Rot3& X, OptionalJacobian<3, 3> H = {}) {
|
|
|
|
|
Vector3 z = X.inverse().rotate(m_world);
|
|
|
|
|
if (H) *H = -skewSymmetric(z);
|
|
|
|
|
return z;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
|
// Initial estimate (identity) and covariance
|
|
|
|
|
const Rot3 R0 = Rot3::RzRyRx(0.1, -0.2, 0.3);
|
|
|
|
|
const Matrix3 P0 = Matrix3::Identity() * 0.1;
|
2025-05-07 21:55:45 +08:00
|
|
|
|
LieGroupEKF<Rot3> ekf(R0, P0);
|
2025-04-27 22:40:28 +08:00
|
|
|
|
|
|
|
|
|
// Timestep, process noise, measurement noise
|
|
|
|
|
double dt = 0.1;
|
|
|
|
|
Matrix3 Q = Matrix3::Identity() * 0.01;
|
|
|
|
|
Matrix3 Rm = Matrix3::Identity() * 0.05;
|
|
|
|
|
|
|
|
|
|
cout << "=== Init ===\nR:\n"
|
|
|
|
|
<< ekf.state().matrix() << "\nP:\n"
|
|
|
|
|
<< ekf.covariance() << "\n\n";
|
|
|
|
|
|
|
|
|
|
// Predict using state‐dependent f
|
|
|
|
|
ekf.predict(dynamicsSO3, dt, Q);
|
|
|
|
|
cout << "--- After predict ---\nR:\n" << ekf.state().matrix() << "\n\n";
|
|
|
|
|
|
|
|
|
|
// Magnetometer measurement = body‐frame reading of m_world
|
|
|
|
|
Vector3 z = h_mag(R0);
|
|
|
|
|
ekf.update(h_mag, z, Rm);
|
|
|
|
|
cout << "--- After update ---\nR:\n" << ekf.state().matrix() << "\n";
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|