236 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			236 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
|  | /* ----------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||
|  |  * Atlanta, Georgia 30332-0415 | ||
|  |  * All Rights Reserved | ||
|  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  | 
 | ||
|  |  * See LICENSE for the license information | ||
|  | 
 | ||
|  |  * -------------------------------------------------------------------------- */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  *  @file  testProjectionFactor.cpp | ||
|  |  *  @brief Unit tests for ProjectionFactor Class | ||
|  |  *  @author Frank Dellaert | ||
|  |  *  @date Nov 2009 | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <gtsam_unstable/nonlinear/ConcurrentBatchFilter.h>
 | ||
|  | #include <gtsam/slam/PriorFactor.h>
 | ||
|  | #include <gtsam/slam/BetweenFactor.h>
 | ||
|  | #include <gtsam/slam/ProjectionFactor.h>
 | ||
|  | #include <gtsam_unstable/slam/MultiProjectionFactor.h>
 | ||
|  | #include <gtsam/nonlinear/ISAM2.h>
 | ||
|  | #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | ||
|  | #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | ||
|  | #include <gtsam/nonlinear/LinearContainerFactor.h>
 | ||
|  | #include <gtsam/nonlinear/Ordering.h>
 | ||
|  | #include <gtsam/nonlinear/Values.h>
 | ||
|  | #include <gtsam/nonlinear/Symbol.h>
 | ||
|  | #include <gtsam/nonlinear/Key.h>
 | ||
|  | #include <gtsam/linear/GaussianSequentialSolver.h>
 | ||
|  | #include <gtsam/inference/JunctionTree.h>
 | ||
|  | #include <gtsam/geometry/Pose3.h>
 | ||
|  | #include <gtsam/geometry/Point3.h>
 | ||
|  | #include <gtsam/geometry/Point2.h>
 | ||
|  | #include <gtsam/geometry/Cal3DS2.h>
 | ||
|  | #include <gtsam/geometry/Cal3_S2.h>
 | ||
|  | #include <CppUnitLite/TestHarness.h>
 | ||
|  | 
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | using namespace gtsam; | ||
|  | 
 | ||
|  | // make a realistic calibration matrix
 | ||
|  | static double fov = 60; // degrees
 | ||
|  | static size_t w=640,h=480; | ||
|  | static Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h)); | ||
|  | 
 | ||
|  | // Create a noise model for the pixel error
 | ||
|  | static SharedNoiseModel model(noiseModel::Unit::Create(2)); | ||
|  | 
 | ||
|  | // Convenience for named keys
 | ||
|  | //using symbol_shorthand::X;
 | ||
|  | //using symbol_shorthand::L;
 | ||
|  | 
 | ||
|  | //typedef GenericProjectionFactor<Pose3, Point3> TestProjectionFactor;
 | ||
|  | 
 | ||
|  | 
 | ||
|  | ///* ************************************************************************* */
 | ||
|  | TEST( MultiProjectionFactor, create ){ | ||
|  |   Values theta; | ||
|  |   NonlinearFactorGraph graph; | ||
|  | 
 | ||
|  |   Symbol x1('X',  1); | ||
|  |   Symbol x2('X',  2); | ||
|  |   Symbol x3('X',  3); | ||
|  | 
 | ||
|  |   Symbol l1('l',  1); | ||
|  |   Vector n_measPixel(6); // Pixel measurements from 3 cameras observing landmark 1
 | ||
|  |   n_measPixel << 10, 10, 10, 10, 10, 10; | ||
|  |   const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1); | ||
|  | 
 | ||
|  |   FastSet<Key> views; | ||
|  |   views.insert(x1); | ||
|  |   views.insert(x2); | ||
|  |   views.insert(x3); | ||
|  | 
 | ||
|  |   MultiProjectionFactor<Pose3, Point3> mpFactor(n_measPixel, noiseProjection, views, l1, K); | ||
|  |   graph.add(mpFactor); | ||
|  | 
 | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | ///* ************************************************************************* */
 | ||
|  | //TEST( ProjectionFactor, nonStandard ) {
 | ||
|  | //  GenericProjectionFactor<Pose3, Point3, Cal3DS2> f;
 | ||
|  | //}
 | ||
|  | //
 | ||
|  | ///* ************************************************************************* */
 | ||
|  | //TEST( ProjectionFactor, Constructor) {
 | ||
|  | //  Key poseKey(X(1));
 | ||
|  | //  Key pointKey(L(1));
 | ||
|  | //
 | ||
|  | //  Point2 measurement(323.0, 240.0);
 | ||
|  | //
 | ||
|  | //  TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
 | ||
|  | //}
 | ||
|  | //
 | ||
|  | ///* ************************************************************************* */
 | ||
|  | //TEST( ProjectionFactor, ConstructorWithTransform) {
 | ||
|  | //  Key poseKey(X(1));
 | ||
|  | //  Key pointKey(L(1));
 | ||
|  | //
 | ||
|  | //  Point2 measurement(323.0, 240.0);
 | ||
|  | //  Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
 | ||
|  | //
 | ||
|  | //  TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
 | ||
|  | //}
 | ||
|  | //
 | ||
|  | ///* ************************************************************************* */
 | ||
|  | //TEST( ProjectionFactor, Equals ) {
 | ||
|  | //  // Create two identical factors and make sure they're equal
 | ||
|  | //  Point2 measurement(323.0, 240.0);
 | ||
|  | //
 | ||
|  | //  TestProjectionFactor factor1(measurement, model, X(1), L(1), K);
 | ||
|  | //  TestProjectionFactor factor2(measurement, model, X(1), L(1), K);
 | ||
|  | //
 | ||
|  | //  CHECK(assert_equal(factor1, factor2));
 | ||
|  | //}
 | ||
|  | //
 | ||
|  | ///* ************************************************************************* */
 | ||
|  | //TEST( ProjectionFactor, EqualsWithTransform ) {
 | ||
|  | //  // Create two identical factors and make sure they're equal
 | ||
|  | //  Point2 measurement(323.0, 240.0);
 | ||
|  | //  Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
 | ||
|  | //
 | ||
|  | //  TestProjectionFactor factor1(measurement, model, X(1), L(1), K, body_P_sensor);
 | ||
|  | //  TestProjectionFactor factor2(measurement, model, X(1), L(1), K, body_P_sensor);
 | ||
|  | //
 | ||
|  | //  CHECK(assert_equal(factor1, factor2));
 | ||
|  | //}
 | ||
|  | //
 | ||
|  | ///* ************************************************************************* */
 | ||
|  | //TEST( ProjectionFactor, Error ) {
 | ||
|  | //  // Create the factor with a measurement that is 3 pixels off in x
 | ||
|  | //  Key poseKey(X(1));
 | ||
|  | //  Key pointKey(L(1));
 | ||
|  | //  Point2 measurement(323.0, 240.0);
 | ||
|  | //  TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
 | ||
|  | //
 | ||
|  | //  // Set the linearization point
 | ||
|  | //  Pose3 pose(Rot3(), Point3(0,0,-6));
 | ||
|  | //  Point3 point(0.0, 0.0, 0.0);
 | ||
|  | //
 | ||
|  | //  // Use the factor to calculate the error
 | ||
|  | //  Vector actualError(factor.evaluateError(pose, point));
 | ||
|  | //
 | ||
|  | //  // The expected error is (-3.0, 0.0) pixels / UnitCovariance
 | ||
|  | //  Vector expectedError = Vector_(2, -3.0, 0.0);
 | ||
|  | //
 | ||
|  | //  // Verify we get the expected error
 | ||
|  | //  CHECK(assert_equal(expectedError, actualError, 1e-9));
 | ||
|  | //}
 | ||
|  | //
 | ||
|  | ///* ************************************************************************* */
 | ||
|  | //TEST( ProjectionFactor, ErrorWithTransform ) {
 | ||
|  | //  // Create the factor with a measurement that is 3 pixels off in x
 | ||
|  | //  Key poseKey(X(1));
 | ||
|  | //  Key pointKey(L(1));
 | ||
|  | //  Point2 measurement(323.0, 240.0);
 | ||
|  | //  Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
 | ||
|  | //  TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
 | ||
|  | //
 | ||
|  | //  // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
 | ||
|  | //  Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
 | ||
|  | //  Point3 point(0.0, 0.0, 0.0);
 | ||
|  | //
 | ||
|  | //  // Use the factor to calculate the error
 | ||
|  | //  Vector actualError(factor.evaluateError(pose, point));
 | ||
|  | //
 | ||
|  | //  // The expected error is (-3.0, 0.0) pixels / UnitCovariance
 | ||
|  | //  Vector expectedError = Vector_(2, -3.0, 0.0);
 | ||
|  | //
 | ||
|  | //  // Verify we get the expected error
 | ||
|  | //  CHECK(assert_equal(expectedError, actualError, 1e-9));
 | ||
|  | //}
 | ||
|  | //
 | ||
|  | ///* ************************************************************************* */
 | ||
|  | //TEST( ProjectionFactor, Jacobian ) {
 | ||
|  | //  // Create the factor with a measurement that is 3 pixels off in x
 | ||
|  | //  Key poseKey(X(1));
 | ||
|  | //  Key pointKey(L(1));
 | ||
|  | //  Point2 measurement(323.0, 240.0);
 | ||
|  | //  TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
 | ||
|  | //
 | ||
|  | //  // Set the linearization point
 | ||
|  | //  Pose3 pose(Rot3(), Point3(0,0,-6));
 | ||
|  | //  Point3 point(0.0, 0.0, 0.0);
 | ||
|  | //
 | ||
|  | //  // Use the factor to calculate the Jacobians
 | ||
|  | //  Matrix H1Actual, H2Actual;
 | ||
|  | //  factor.evaluateError(pose, point, H1Actual, H2Actual);
 | ||
|  | //
 | ||
|  | //  // The expected Jacobians
 | ||
|  | //  Matrix H1Expected = Matrix_(2, 6, 0., -554.256, 0., -92.376, 0., 0., 554.256, 0., 0., 0., -92.376, 0.);
 | ||
|  | //  Matrix H2Expected = Matrix_(2, 3, 92.376, 0., 0., 0., 92.376, 0.);
 | ||
|  | //
 | ||
|  | //  // Verify the Jacobians are correct
 | ||
|  | //  CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
 | ||
|  | //  CHECK(assert_equal(H2Expected, H2Actual, 1e-3));
 | ||
|  | //}
 | ||
|  | //
 | ||
|  | ///* ************************************************************************* */
 | ||
|  | //TEST( ProjectionFactor, JacobianWithTransform ) {
 | ||
|  | //  // Create the factor with a measurement that is 3 pixels off in x
 | ||
|  | //  Key poseKey(X(1));
 | ||
|  | //  Key pointKey(L(1));
 | ||
|  | //  Point2 measurement(323.0, 240.0);
 | ||
|  | //  Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
 | ||
|  | //  TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
 | ||
|  | //
 | ||
|  | //  // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
 | ||
|  | //  Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
 | ||
|  | //  Point3 point(0.0, 0.0, 0.0);
 | ||
|  | //
 | ||
|  | //  // Use the factor to calculate the Jacobians
 | ||
|  | //  Matrix H1Actual, H2Actual;
 | ||
|  | //  factor.evaluateError(pose, point, H1Actual, H2Actual);
 | ||
|  | //
 | ||
|  | //  // The expected Jacobians
 | ||
|  | //  Matrix H1Expected = Matrix_(2, 6, -92.376, 0., 577.350, 0., 92.376, 0., -9.2376, -577.350, 0., 0., 0., 92.376);
 | ||
|  | //  Matrix H2Expected = Matrix_(2, 3, 0., -92.376, 0., 0., 0., -92.376);
 | ||
|  | //
 | ||
|  | //  // Verify the Jacobians are correct
 | ||
|  | //  CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
 | ||
|  | //  CHECK(assert_equal(H2Expected, H2Actual, 1e-3));
 | ||
|  | //}
 | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | int main() { TestResult tr; return TestRegistry::runAllTests(tr); } | ||
|  | /* ************************************************************************* */ | ||
|  | 
 |