| 
									
										
										
										
											2014-10-03 02:20:00 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * @file Pose2SLAMExample.cpp | 
					
						
							|  |  |  |  * @brief Expressions version of Pose2SLAMExample.cpp | 
					
						
							|  |  |  |  * @date Oct 2, 2014 | 
					
						
							|  |  |  |  * @author Frank Dellaert | 
					
						
							|  |  |  |  * @author Yong Dian Jian | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // The two new headers that allow using our Automatic Differentiation Expression framework
 | 
					
						
							|  |  |  | #include <gtsam_unstable/slam/expressions.h>
 | 
					
						
							| 
									
										
										
										
											2014-10-09 19:00:56 +08:00
										 |  |  | #include <gtsam_unstable/nonlinear/ExpressionFactor.h>
 | 
					
						
							| 
									
										
										
										
											2014-10-03 02:20:00 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | // Header order is close to far
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/GaussNewtonOptimizer.h>
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/Marginals.h>
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/Values.h>
 | 
					
						
							|  |  |  | #include <gtsam/geometry/Pose2.h>
 | 
					
						
							|  |  |  | #include <gtsam/inference/Key.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | using namespace std; | 
					
						
							|  |  |  | using namespace gtsam; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int main(int argc, char** argv) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // 1. Create a factor graph container and add factors to it
 | 
					
						
							|  |  |  |   NonlinearFactorGraph graph; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create Expressions for unknowns
 | 
					
						
							|  |  |  |   Pose2_ x1(1), x2(2), x3(3), x4(4), x5(5); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // 2a. Add a prior on the first pose, setting it to the origin
 | 
					
						
							|  |  |  |   noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.3, 0.3, 0.1)); | 
					
						
							| 
									
										
										
										
											2014-10-09 19:00:56 +08:00
										 |  |  |   graph.push_back(ExpressionFactor<Pose2>(priorNoise, Pose2(0, 0, 0), x1)); | 
					
						
							| 
									
										
										
										
											2014-10-03 02:20:00 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   // For simplicity, we will use the same noise model for odometry and loop closures
 | 
					
						
							|  |  |  |   noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // 2b. Add odometry factors
 | 
					
						
							| 
									
										
										
										
											2014-10-09 19:00:56 +08:00
										 |  |  |   graph.push_back(ExpressionFactor<Pose2>(model, Pose2(2, 0, 0     ), between(x1,x2))); | 
					
						
							|  |  |  |   graph.push_back(ExpressionFactor<Pose2>(model, Pose2(2, 0, M_PI_2), between(x2,x3))); | 
					
						
							|  |  |  |   graph.push_back(ExpressionFactor<Pose2>(model, Pose2(2, 0, M_PI_2), between(x3,x4))); | 
					
						
							|  |  |  |   graph.push_back(ExpressionFactor<Pose2>(model, Pose2(2, 0, M_PI_2), between(x4,x5))); | 
					
						
							| 
									
										
										
										
											2014-10-03 02:20:00 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   // 2c. Add the loop closure constraint
 | 
					
						
							| 
									
										
										
										
											2014-10-09 19:00:56 +08:00
										 |  |  |   graph.push_back(ExpressionFactor<Pose2>(model, Pose2(2, 0, M_PI_2), between(x5,x2))); | 
					
						
							| 
									
										
										
										
											2014-10-03 02:20:00 +08:00
										 |  |  |   graph.print("\nFactor Graph:\n"); // print
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // 3. Create the data structure to hold the initialEstimate estimate to the solution
 | 
					
						
							|  |  |  |   // For illustrative purposes, these have been deliberately set to incorrect values
 | 
					
						
							|  |  |  |   Values initialEstimate; | 
					
						
							|  |  |  |   initialEstimate.insert(1, Pose2(0.5, 0.0,  0.2   )); | 
					
						
							|  |  |  |   initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2   )); | 
					
						
							|  |  |  |   initialEstimate.insert(3, Pose2(4.1, 0.1,  M_PI_2)); | 
					
						
							|  |  |  |   initialEstimate.insert(4, Pose2(4.0, 2.0,  M_PI  )); | 
					
						
							|  |  |  |   initialEstimate.insert(5, Pose2(2.1, 2.1, -M_PI_2)); | 
					
						
							|  |  |  |   initialEstimate.print("\nInitial Estimate:\n"); // print
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // 4. Optimize the initial values using a Gauss-Newton nonlinear optimizer
 | 
					
						
							|  |  |  |   GaussNewtonParams parameters; | 
					
						
							|  |  |  |   parameters.relativeErrorTol = 1e-5; | 
					
						
							|  |  |  |   parameters.maxIterations = 100; | 
					
						
							|  |  |  |   GaussNewtonOptimizer optimizer(graph, initialEstimate, parameters); | 
					
						
							|  |  |  |   Values result = optimizer.optimize(); | 
					
						
							|  |  |  |   result.print("Final Result:\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // 5. Calculate and print marginal covariances for all variables
 | 
					
						
							|  |  |  |   cout.precision(3); | 
					
						
							|  |  |  |   Marginals marginals(graph, result); | 
					
						
							|  |  |  |   cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl; | 
					
						
							|  |  |  |   cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl; | 
					
						
							|  |  |  |   cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl; | 
					
						
							|  |  |  |   cout << "x4 covariance:\n" << marginals.marginalCovariance(4) << endl; | 
					
						
							|  |  |  |   cout << "x5 covariance:\n" << marginals.marginalCovariance(5) << endl; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return 0; | 
					
						
							|  |  |  | } |