30 lines
		
	
	
		
			676 B
		
	
	
	
		
			Matlab
		
	
	
		
		
			
		
	
	
			30 lines
		
	
	
		
			676 B
		
	
	
	
		
			Matlab
		
	
	
| 
								 | 
							
								% create a linear factor graph
							 | 
						||
| 
								 | 
							
								% The non-linear graph above evaluated at NoisyConfig
							 | 
						||
| 
								 | 
							
								function fg = createGaussianFactorGraph()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								c = createNoisyConfig(); 
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% Create
							 | 
						||
| 
								 | 
							
								fg = GaussianFactorGraph;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% Create shared Noise model
							 | 
						||
| 
								 | 
							
								unit2 = SharedDiagonal([1;1]);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% prior on x1
							 | 
						||
| 
								 | 
							
								I=eye(2);
							 | 
						||
| 
								 | 
							
								f1 = GaussianFactor('x1', 10*I, [-1;-1], unit2);
							 | 
						||
| 
								 | 
							
								fg.push_back(f1);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% odometry between x1 and x2
							 | 
						||
| 
								 | 
							
								f2 = GaussianFactor('x1', -10*I, 'x2', 10*I, [2;-1], unit2);
							 | 
						||
| 
								 | 
							
								fg.push_back(f2);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% measurement between x1 and l1
							 | 
						||
| 
								 | 
							
								f3 = GaussianFactor('x1', -5*I, 'l1', 5*I, [0;1], unit2);
							 | 
						||
| 
								 | 
							
								fg.push_back(f3);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								% measurement between x2 and l1
							 | 
						||
| 
								 | 
							
								f4 = GaussianFactor('x2', -5*I, 'l1', 5*I, [-1;1.5], unit2);
							 | 
						||
| 
								 | 
							
								fg.push_back(f4);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								end
							 |