gtsam/matlab/+gtsam/points2DTrackMonocular.m

101 lines
2.8 KiB
Matlab
Raw Normal View History

2015-01-14 05:33:47 +08:00
function pts2dTracksMono = points2DTrackMonocular(K, cameraPoses, imageSize, cylinders)
2015-01-12 12:20:50 +08:00
% Assess how accurately we can reconstruct points from a particular monocular camera setup.
% After creation of the factor graph for each track, linearize it around ground truth.
% There is no optimization
% @author: Zhaoyang Lv
import gtsam.*
%% create graph
graph = NonlinearFactorGraph;
%% create the noise factors
2015-01-12 12:20:50 +08:00
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
posePriorNoise = noiseModel.Diagonal.Sigmas(poseNoiseSigmas);
measurementNoiseSigma = 1.0;
measurementNoise = noiseModel.Isotropic.Sigma(2, measurementNoiseSigma);
2015-01-12 12:20:50 +08:00
2015-01-14 05:33:47 +08:00
cameraPosesNum = length(cameraPoses);
%% add measurements and initial camera & points values
pointsNum = 0;
cylinderNum = length(cylinders);
for i = 1:cylinderNum
pointsNum = pointsNum + length(cylinders{i}.Points);
end
2015-01-12 12:20:50 +08:00
2015-01-14 05:33:47 +08:00
pts3d = cell(cameraPosesNum, 1);
2015-01-12 12:20:50 +08:00
initialEstimate = Values;
initialized = false;
2015-01-12 12:20:50 +08:00
for i = 1:cameraPosesNum
% add a constraint on the starting pose
2015-01-14 05:33:47 +08:00
cameraPose = cameraPoses{i};
2015-01-14 05:33:47 +08:00
pts3d{i} = cylinderSampleProjection(K, cameraPose, imageSize, cylinders);
if ~initialized
2015-01-14 05:33:47 +08:00
graph.add(PriorFactorPose3(symbol('x', 1), cameraPose, posePriorNoise));
initialized = true;
end
2015-01-14 05:33:47 +08:00
for j = 1:length(pts3d{i}.Z)
if isempty(pts3d{i}.Z{j})
continue;
end
2015-01-14 05:33:47 +08:00
graph.add(GenericProjectionFactorCal3_S2(pts3d{i}.Z{j}, ...
measurementNoise, symbol('x', i), symbol('p', j), K) );
end
end
%% initialize cameras and points close to ground truth
for i = 1:cameraPosesNum
2015-01-14 05:33:47 +08:00
pose_i = cameraPoses{i}.retract(0.1*randn(6,1));
initialEstimate.insert(symbol('x', i), pose_i);
end
ptsIdx = 0;
for i = 1:length(cylinders)
for j = 1:length(cylinders{i}.Points)
ptsIdx = ptsIdx + 1;
point_j = cylinders{i}.Points{j}.retract(0.1*randn(3,1));
initialEstimate.insert(symbol('p', ptsIdx), point_j);
end
2015-01-12 12:20:50 +08:00
end
%% Print the graph
graph.print(sprintf('\nFactor graph:\n'));
marginals = Marginals(graph, initialEstimate);
2015-01-12 12:20:50 +08:00
2015-01-14 00:34:24 +08:00
%% get all the points track information
% currently throws the Indeterminant linear system exception
2015-01-14 05:33:47 +08:00
ptx = 1;
2015-01-14 00:34:24 +08:00
for k = 1:cameraPosesNum
for i = 1:length(cylinders)
for j = 1:length(cylinders{i}.Points)
2015-01-14 05:33:47 +08:00
if isempty(pts3d{k}.index{i}{j})
2015-01-14 00:34:24 +08:00
continue;
end
2015-01-14 05:33:47 +08:00
idx = pts3d{k}.index{i}{j};
pts2dTracksMono.pt3d{ptx} = pts3d{k}.data{idx};
pts2dTracksMono.Z{ptx} = pts3d{k}.Z{idx};
pts2dTracksMono.cov{ptx} = marginals.marginalCovariance(symbol('p',idx));
2015-01-14 05:33:47 +08:00
2015-01-14 00:34:24 +08:00
ptx = ptx + 1;
end
end
2015-01-12 12:20:50 +08:00
end
2015-01-14 00:34:24 +08:00
%% plot the result with covariance ellipses
hold on;
2015-01-14 05:33:47 +08:00
%plot3DPoints(initialEstimate, [], marginals);
%plot3DTrajectory(initialEstimate, '*', 1, 8, marginals);
plot3DTrajectory(initialEstimate, '*', 1, 8);
view(3);
2015-01-14 00:34:24 +08:00
2015-01-12 12:20:50 +08:00
end