| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | /*
 | 
					
						
							|  |  |  |  * NoiseModel.h | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  *  Created on: Jan 13, 2010 | 
					
						
							| 
									
										
										
										
											2010-01-17 08:37:34 +08:00
										 |  |  |  *      Author: Richard Roberts | 
					
						
							|  |  |  |  *      Author: Frank Dellaert | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #pragma once
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-17 11:29:23 +08:00
										 |  |  | #include <boost/shared_ptr.hpp>
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  | #include "Testable.h"
 | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | #include "Vector.h"
 | 
					
						
							|  |  |  | #include "Matrix.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  | namespace gtsam {	namespace noiseModel { | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-17 08:37:34 +08:00
										 |  |  |   /**
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |    * noiseModel::Base is the abstract base class for all noise models. | 
					
						
							| 
									
										
										
										
											2010-01-17 09:28:15 +08:00
										 |  |  |    * | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |    * Noise models must implement a 'whiten' function to normalize an error vector, | 
					
						
							|  |  |  |    * and an 'unwhiten' function to unnormalize an error vector. | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  |    */ | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |   class Base : public Testable<Base> { | 
					
						
							| 
									
										
										
										
											2010-01-17 23:10:10 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   protected: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   	size_t dim_; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   public: | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |   	Base(size_t dim):dim_(dim) {} | 
					
						
							|  |  |  |   	virtual ~Base() {} | 
					
						
							| 
									
										
										
										
											2010-01-17 08:37:34 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  |     /**
 | 
					
						
							|  |  |  |      * Whiten an error vector. | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     virtual Vector whiten(const Vector& v) const = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /**
 | 
					
						
							|  |  |  |      * Unwhiten an error vector. | 
					
						
							|  |  |  |      */ | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |     virtual Vector unwhiten(const Vector& v) const = 0; | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     /** in-place whiten, override if can be done more efficiently */ | 
					
						
							|  |  |  |     virtual void whitenInPlace(Vector& v) const { | 
					
						
							|  |  |  |     	v = whiten(v); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** in-place unwhiten, override if can be done more efficiently */ | 
					
						
							|  |  |  |     virtual void unwhitenInPlace(Vector& v) const { | 
					
						
							|  |  |  |     	v = unwhiten(v); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  |   }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-17 09:28:15 +08:00
										 |  |  |   /**
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  | 	 * Gaussian implements the mathematical model | 
					
						
							| 
									
										
										
										
											2010-01-17 09:28:15 +08:00
										 |  |  | 	 *  |R*x|^2 = |y|^2 with R'*R=inv(Sigma) | 
					
						
							|  |  |  | 	 * where | 
					
						
							|  |  |  | 	 *   y = whiten(x) = R*x | 
					
						
							|  |  |  | 	 *   x = unwhiten(x) = inv(R)*y | 
					
						
							|  |  |  | 	 * as indeed | 
					
						
							|  |  |  | 	 *   |y|^2 = y'*y = x'*R'*R*x | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 	 * Various derived classes are available that are more efficient. | 
					
						
							| 
									
										
										
										
											2010-01-17 09:28:15 +08:00
										 |  |  | 	 */ | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  | 	struct Gaussian: public Base { | 
					
						
							| 
									
										
										
										
											2010-01-17 09:28:15 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 	protected: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// TODO: store as boost upper-triangular or whatever is passed from above
 | 
					
						
							|  |  |  | 		/* Matrix square root of information matrix (R) */ | 
					
						
							|  |  |  | 		Matrix sqrt_information_; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		/** protected constructor takes square root information matrix */ | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  | 		Gaussian(const Matrix& sqrt_information) : | 
					
						
							|  |  |  | 			Base(sqrt_information.size1()), sqrt_information_(sqrt_information) { | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 		} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	public: | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  | 		typedef boost::shared_ptr<Gaussian> shared_ptr; | 
					
						
							| 
									
										
										
										
											2010-01-17 23:10:10 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-17 11:29:23 +08:00
										 |  |  |     /**
 | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |      * A Gaussian noise model created by specifying a square root information matrix. | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     static shared_ptr SqrtInformation(const Matrix& R) { | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |     	return shared_ptr(new Gaussian(R)); | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |     } | 
					
						
							| 
									
										
										
										
											2010-01-17 09:28:15 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |     /**
 | 
					
						
							|  |  |  |      * A Gaussian noise model created by specifying a covariance matrix. | 
					
						
							|  |  |  |      */ | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |     static shared_ptr Covariance(const Matrix& covariance) { | 
					
						
							|  |  |  |     	return shared_ptr(new Gaussian(inverse_square_root(covariance))); | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |     } | 
					
						
							| 
									
										
										
										
											2010-01-17 23:10:10 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |     /**
 | 
					
						
							|  |  |  |      * A Gaussian noise model created by specifying an information matrix. | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     static shared_ptr Information(const Matrix& Q)  { | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |     	return shared_ptr(new Gaussian(square_root_positive(Q))); | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |     } | 
					
						
							| 
									
										
										
										
											2010-01-17 23:10:10 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  | 		virtual void print(const std::string& name) const; | 
					
						
							|  |  |  | 		virtual bool equals(const Base& expected, double tol) const; | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |     virtual Vector whiten(const Vector& v) const; | 
					
						
							|  |  |  | 		virtual Vector unwhiten(const Vector& v) const; | 
					
						
							| 
									
										
										
										
											2010-01-17 23:10:10 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |     /**
 | 
					
						
							|  |  |  | 		 * Mahalanobis distance v'*R'*R*v = <R*v,R*v> | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		virtual double Mahalanobis(const Vector& v) const; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 		/**
 | 
					
						
							|  |  |  | 		 * Multiply a derivative with R (derivative of whiten) | 
					
						
							|  |  |  | 		 * Equivalent to whitening each column of the input matrix. | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		virtual Matrix Whiten(const Matrix& H) const; | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 		/**
 | 
					
						
							|  |  |  | 		 * In-place version | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		virtual void WhitenInPlace(Matrix& H) const; | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 		/**
 | 
					
						
							|  |  |  | 		 * Return R itself, but note that Whiten(H) is cheaper than R*H | 
					
						
							|  |  |  | 		 */ | 
					
						
							|  |  |  | 		const Matrix& R() const { | 
					
						
							|  |  |  | 			return sqrt_information_; | 
					
						
							|  |  |  | 		} | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  | 	}; // Gaussian
 | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 	// FD: does not work, ambiguous overload :-(
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |   // inline Vector operator*(const Gaussian& R, const Vector& v) {return R.whiten(v);}
 | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-17 08:37:34 +08:00
										 |  |  |   /**
 | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  |    * A diagonal noise model implements a diagonal covariance matrix, with the | 
					
						
							|  |  |  |    * elements of the diagonal specified in a Vector.  This class has no public | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |    * constructors, instead, use the static constructor functions Sigmas etc... | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  |    */ | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |   class Diagonal : public Gaussian { | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  |   protected: | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |   	/** sigmas and reciprocal */ | 
					
						
							|  |  |  |     Vector sigmas_, invsigmas_; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** protected constructor takes sigmas */ | 
					
						
							| 
									
										
										
										
											2010-01-17 08:37:34 +08:00
										 |  |  |     Diagonal(const Vector& sigmas); | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   public: | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 		typedef boost::shared_ptr<Diagonal> shared_ptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /**
 | 
					
						
							|  |  |  |      * A diagonal noise model created by specifying a Vector of sigmas, i.e. | 
					
						
							|  |  |  |      * standard devations, the diagonal of the square root covariance matrix. | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     static shared_ptr Sigmas(const Vector& sigmas) { | 
					
						
							|  |  |  |     	return shared_ptr(new Diagonal(sigmas)); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /**
 | 
					
						
							|  |  |  |      * A diagonal noise model created by specifying a Vector of variances, i.e. | 
					
						
							|  |  |  |      * i.e. the diagonal of the covariance matrix. | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     static shared_ptr Variances(const Vector& variances) { | 
					
						
							|  |  |  |     	return shared_ptr(new Diagonal(esqrt(variances))); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /**
 | 
					
						
							|  |  |  |      * A diagonal noise model created by specifying a Vector of precisions, i.e. | 
					
						
							|  |  |  |      * i.e. the diagonal of the information matrix, i.e., weights | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     static shared_ptr Precisions(const Vector& precisions) { | 
					
						
							|  |  |  |     	return Variances(reciprocal(precisions)); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  | 		virtual void print(const std::string& name) const; | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |     virtual Vector whiten(const Vector& v) const; | 
					
						
							|  |  |  |     virtual Vector unwhiten(const Vector& v) const; | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  |   }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |   /**
 | 
					
						
							|  |  |  |    * A Constrained constrained model is a specialization of Diagonal which allows | 
					
						
							|  |  |  |    * some or all of the sigmas to be zero, forcing the error to be zero there. | 
					
						
							|  |  |  |    * All other Gaussian models are guaranteed to have a non-singular square-root | 
					
						
							|  |  |  |    * information matrix, but this class is specifically equipped to deal with | 
					
						
							|  |  |  |    * singular noise models, specifically: whiten will return zero on those | 
					
						
							|  |  |  |    * components that have zero sigma *and* zero error, infinity otherwise. | 
					
						
							|  |  |  |    */ | 
					
						
							|  |  |  |   class Constrained : public Diagonal { | 
					
						
							|  |  |  |   protected: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** protected constructor takes sigmas */ | 
					
						
							|  |  |  |   	Constrained(const Vector& sigmas) :Diagonal(sigmas) {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   public: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		typedef boost::shared_ptr<Constrained> shared_ptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /**
 | 
					
						
							|  |  |  |      * A diagonal noise model created by specifying a Vector of | 
					
						
							|  |  |  |      * standard devations, some of which might be zero | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     static shared_ptr Mixed(const Vector& sigmas) { | 
					
						
							|  |  |  |     	return shared_ptr(new Constrained(sigmas)); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /**
 | 
					
						
							|  |  |  |      * Fully constrained. TODO: subclass ? | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     static shared_ptr All(size_t dim) { | 
					
						
							|  |  |  |     	return Mixed(repeat(dim,0)); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		virtual void print(const std::string& name) const; | 
					
						
							|  |  |  |     virtual Vector whiten(const Vector& v) const; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		// Whitening Jacobians does not make sense for possibly constrained
 | 
					
						
							|  |  |  | 		// noise model and will throw an exception.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 		virtual Matrix Whiten(const Matrix& H) const; | 
					
						
							|  |  |  | 		virtual void WhitenInPlace(Matrix& H) const; | 
					
						
							|  |  |  |   }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-17 08:37:34 +08:00
										 |  |  |   /**
 | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |    * An isotropic noise model corresponds to a scaled diagonal covariance | 
					
						
							|  |  |  |    * To construct, use one of the static methods | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  |    */ | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |   class Isotropic : public Diagonal { | 
					
						
							|  |  |  |   protected: | 
					
						
							|  |  |  |     double sigma_, invsigma_; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** protected constructor takes sigma */ | 
					
						
							|  |  |  |     Isotropic(size_t dim, double sigma) : | 
					
						
							|  |  |  | 			Diagonal(repeat(dim, sigma)),sigma_(sigma),invsigma_(1.0/sigma) {} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  |   public: | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 		typedef boost::shared_ptr<Isotropic> shared_ptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /**
 | 
					
						
							|  |  |  |      * An isotropic noise model created by specifying a standard devation sigma | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     static shared_ptr Sigma(size_t dim, double sigma) { | 
					
						
							|  |  |  |     	return shared_ptr(new Isotropic(dim, sigma)); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /**
 | 
					
						
							|  |  |  |      * An isotropic noise model created by specifying a variance = sigma^2. | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     static shared_ptr Variance(size_t dim, double variance)  { | 
					
						
							|  |  |  |     	return shared_ptr(new Isotropic(dim, sqrt(variance))); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /**
 | 
					
						
							|  |  |  |      * An isotropic noise model created by specifying a precision | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     static shared_ptr Precision(size_t dim, double precision)  { | 
					
						
							|  |  |  |     	return Variance(dim, 1.0/precision); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  | 		virtual void print(const std::string& name) const; | 
					
						
							|  |  |  | 		virtual double Mahalanobis(const Vector& v) const; | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |     virtual Vector whiten(const Vector& v) const; | 
					
						
							|  |  |  |     virtual Vector unwhiten(const Vector& v) const; | 
					
						
							| 
									
										
										
										
											2010-01-17 08:37:34 +08:00
										 |  |  |   }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /**
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |    * Unit: i.i.d. unit-variance noise on all m dimensions. | 
					
						
							| 
									
										
										
										
											2010-01-17 08:37:34 +08:00
										 |  |  |    */ | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |   class Unit : public Isotropic { | 
					
						
							| 
									
										
										
										
											2010-01-17 08:37:34 +08:00
										 |  |  |   protected: | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |     Unit(size_t dim): Isotropic(dim,1.0) {} | 
					
						
							| 
									
										
										
										
											2010-01-17 08:37:34 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   public: | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |     typedef boost::shared_ptr<Unit> shared_ptr; | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     /**
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |      * Create a unit covariance noise model | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |      */ | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  |     static shared_ptr Create(size_t dim) { | 
					
						
							|  |  |  |     	return shared_ptr(new Unit(dim)); | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  | 		virtual void print(const std::string& name) const; | 
					
						
							|  |  |  | 		virtual double Mahalanobis(const Vector& v) const {return inner_prod(v,v); } | 
					
						
							| 
									
										
										
										
											2010-01-18 01:47:23 +08:00
										 |  |  |     virtual Vector whiten(const Vector& v) const { return v; } | 
					
						
							|  |  |  |     virtual Vector unwhiten(const Vector& v) const { return v; } | 
					
						
							|  |  |  |     virtual Matrix Whiten(const Matrix& H) const { return H; } | 
					
						
							|  |  |  | 	  virtual void WhitenInPlace(Matrix& H) const {} | 
					
						
							| 
									
										
										
										
											2010-01-17 02:39:39 +08:00
										 |  |  |   }; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 |  |  | 	} // namespace noiseModel
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	using namespace noiseModel; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 	// A useful convenience class to refer to a shared Gaussian model
 | 
					
						
							|  |  |  | 	// Define GTSAM_MAGIC_GAUSSIAN to desired dimension to have access to slightly
 | 
					
						
							|  |  |  | 	// dangerous and non-shared (inefficient, wasteful) noise models. Only in tests!
 | 
					
						
							|  |  |  | 	struct sharedGaussian : public Gaussian::shared_ptr { | 
					
						
							|  |  |  | 		sharedGaussian() {} | 
					
						
							|  |  |  | 		sharedGaussian(const    Gaussian::shared_ptr& p):Gaussian::shared_ptr(p) {} | 
					
						
							|  |  |  | 		sharedGaussian(const    Diagonal::shared_ptr& p):Gaussian::shared_ptr(p) {} | 
					
						
							|  |  |  | 		sharedGaussian(const Constrained::shared_ptr& p):Gaussian::shared_ptr(p) {} | 
					
						
							|  |  |  | 		sharedGaussian(const   Isotropic::shared_ptr& p):Gaussian::shared_ptr(p) {} | 
					
						
							|  |  |  | 		sharedGaussian(const        Unit::shared_ptr& p):Gaussian::shared_ptr(p) {} | 
					
						
							|  |  |  | #ifdef GTSAM_MAGIC_GAUSSIAN
 | 
					
						
							|  |  |  | 		sharedGaussian(const Matrix& covariance):Gaussian::shared_ptr(Gaussian::Covariance(covariance)) {} | 
					
						
							|  |  |  | 		sharedGaussian(const Vector& sigmas):Gaussian::shared_ptr(Diagonal::Sigmas(sigmas)) {} | 
					
						
							|  |  |  | 		sharedGaussian(const double& s):Gaussian::shared_ptr(Isotropic::Sigma(GTSAM_MAGIC_GAUSSIAN,s)) {} | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 		}; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | } // namespace gtsam
 |