| 
									
										
										
										
											2016-01-25 09:08:14 +08:00
										 |  |  | /**
 | 
					
						
							|  |  |  |  * @file     LPInitSolverMatlab.h | 
					
						
							|  |  |  |  * @brief    This LPInitSolver implements the strategy in Matlab: | 
					
						
							|  |  |  |  * @author   Ivan Dario Jimenez | 
					
						
							|  |  |  |  * @date     1/24/16 | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #pragma once
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <gtsam_unstable/linear/LPInitSolver.h>
 | 
					
						
							|  |  |  | #include <gtsam_unstable/linear/InfeasibleOrUnboundedProblem.h>
 | 
					
						
							| 
									
										
										
										
											2016-02-16 03:44:00 +08:00
										 |  |  | #include <gtsam_unstable/linear/QPSolver.h>
 | 
					
						
							| 
									
										
										
										
											2016-02-16 02:53:22 +08:00
										 |  |  | #include <CppUnitLite/Test.h>
 | 
					
						
							| 
									
										
										
										
											2016-01-25 09:08:14 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | namespace gtsam { | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * This LPInitSolver implements the strategy in Matlab: | 
					
						
							|  |  |  |  * http://www.mathworks.com/help/optim/ug/linear-programming-algorithms.html#brozyzb-9
 | 
					
						
							|  |  |  |  * Solve for x and y: | 
					
						
							|  |  |  |  *    min y | 
					
						
							|  |  |  |  *    st Ax = b | 
					
						
							|  |  |  |  *       Cx - y <= d | 
					
						
							|  |  |  |  * where y \in R, x \in R^n, and Ax = b and Cx <= d is the constraints of the original problem. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * If the solution for this problem {x*,y*} has y* <= 0, we'll have x* a feasible initial point | 
					
						
							|  |  |  |  * of the original problem | 
					
						
							|  |  |  |  * otherwise, if y* > 0 or the problem has no solution, the original problem is infeasible. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * The initial value of this initial problem can be found by solving | 
					
						
							|  |  |  |  *    min   ||x||^2 | 
					
						
							|  |  |  |  *    s.t.   Ax = b | 
					
						
							|  |  |  |  * to have a solution x0 | 
					
						
							|  |  |  |  * then y = max_j ( Cj*x0  - dj )  -- due to the constraints y >= Cx - d | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * WARNING: If some xj in the inequality constraints does not exist in the equality constraints, | 
					
						
							|  |  |  |  * set them as zero for now. If that is the case, the original problem doesn't have a unique | 
					
						
							|  |  |  |  * solution (it could be either infeasible or unbounded). | 
					
						
							|  |  |  |  * So, if the initialization fails because we enforce xj=0 in the problematic | 
					
						
							|  |  |  |  * inequality constraint, we can't conclude that the problem is infeasible. | 
					
						
							|  |  |  |  * However, whether it is infeasible or unbounded, we don't have a unique solution anyway. | 
					
						
							|  |  |  |  */ | 
					
						
							| 
									
										
										
										
											2016-02-16 02:53:22 +08:00
										 |  |  | class LPInitSolverMatlab: public LPInitSolver { | 
					
						
							| 
									
										
										
										
											2016-01-25 09:08:14 +08:00
										 |  |  |   typedef LPInitSolver Base; | 
					
						
							|  |  |  | public: | 
					
						
							| 
									
										
										
										
											2016-02-16 02:53:22 +08:00
										 |  |  |   LPInitSolverMatlab(const LPSolver& lpSolver) : | 
					
						
							|  |  |  |       Base(lpSolver) { | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   virtual ~LPInitSolverMatlab() { | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2016-01-25 09:08:14 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-02-16 02:53:22 +08:00
										 |  |  |   virtual VectorValues solve() const { | 
					
						
							| 
									
										
										
										
											2016-01-25 09:08:14 +08:00
										 |  |  |     // Build the graph to solve for the initial value of the initial problem
 | 
					
						
							|  |  |  |     GaussianFactorGraph::shared_ptr initOfInitGraph = buildInitOfInitGraph(); | 
					
						
							|  |  |  |     VectorValues x0 = initOfInitGraph->optimize(); | 
					
						
							|  |  |  |     double y0 = compute_y0(x0); | 
					
						
							|  |  |  |     Key yKey = maxKey(lpSolver_.keysDim()) + 1; // the unique key for y0
 | 
					
						
							|  |  |  |     VectorValues xy0(x0); | 
					
						
							|  |  |  |     xy0.insert(yKey, Vector::Constant(1, y0)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Formulate and solve the initial LP
 | 
					
						
							|  |  |  |     LP::shared_ptr initLP = buildInitialLP(yKey); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // solve the initialLP
 | 
					
						
							|  |  |  |     LPSolver lpSolveInit(*initLP); | 
					
						
							|  |  |  |     VectorValues xyInit = lpSolveInit.optimize(xy0).first; | 
					
						
							|  |  |  |     double yOpt = xyInit.at(yKey)[0]; | 
					
						
							|  |  |  |     xyInit.erase(yKey); | 
					
						
							| 
									
										
										
										
											2016-02-16 02:53:22 +08:00
										 |  |  |     if (yOpt > 0) | 
					
						
							| 
									
										
										
										
											2016-01-25 09:08:14 +08:00
										 |  |  |       throw InfeasibleOrUnboundedProblem(); | 
					
						
							|  |  |  |     else | 
					
						
							|  |  |  |       return xyInit; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | private: | 
					
						
							|  |  |  |   /// build initial LP
 | 
					
						
							|  |  |  |   LP::shared_ptr buildInitialLP(Key yKey) const { | 
					
						
							|  |  |  |     LP::shared_ptr initLP(new LP()); | 
					
						
							| 
									
										
										
										
											2016-02-16 02:53:22 +08:00
										 |  |  |     initLP->cost = LinearCost(yKey, ones(1)); // min y
 | 
					
						
							|  |  |  |     initLP->equalities = lp_.equalities; // st. Ax = b
 | 
					
						
							|  |  |  |     initLP->inequalities = addSlackVariableToInequalities(yKey, | 
					
						
							|  |  |  |         lp_.inequalities); // Cx-y <= d
 | 
					
						
							| 
									
										
										
										
											2016-01-25 09:08:14 +08:00
										 |  |  |     return initLP; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /// Find the max key in the problem to determine unique keys for additional slack variables
 | 
					
						
							|  |  |  |   Key maxKey(const KeyDimMap& keysDim) const { | 
					
						
							|  |  |  |     Key maxK = 0; | 
					
						
							|  |  |  |     BOOST_FOREACH(Key key, keysDim | boost::adaptors::map_keys) | 
					
						
							|  |  |  |     if (maxK < key) | 
					
						
							| 
									
										
										
										
											2016-02-16 02:53:22 +08:00
										 |  |  |     maxK = key; | 
					
						
							| 
									
										
										
										
											2016-01-25 09:08:14 +08:00
										 |  |  |     return maxK; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /**
 | 
					
						
							|  |  |  |    * Build the following graph to solve for an initial value of the initial problem | 
					
						
							|  |  |  |    *    min   ||x||^2    s.t.   Ax = b | 
					
						
							|  |  |  |    */ | 
					
						
							|  |  |  |   GaussianFactorGraph::shared_ptr buildInitOfInitGraph() const { | 
					
						
							|  |  |  |     // first add equality constraints Ax = b
 | 
					
						
							| 
									
										
										
										
											2016-02-16 02:53:22 +08:00
										 |  |  |     GaussianFactorGraph::shared_ptr initGraph( | 
					
						
							|  |  |  |         new GaussianFactorGraph(lp_.equalities)); | 
					
						
							| 
									
										
										
										
											2016-01-25 09:08:14 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     // create factor ||x||^2 and add to the graph
 | 
					
						
							|  |  |  |     const KeyDimMap& keysDim = lpSolver_.keysDim(); | 
					
						
							|  |  |  |     BOOST_FOREACH(Key key, keysDim | boost::adaptors::map_keys) { | 
					
						
							|  |  |  |       size_t dim = keysDim.at(key); | 
					
						
							|  |  |  |       initGraph->push_back(JacobianFactor(key, eye(dim), zero(dim))); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     return initGraph; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /// y = max_j ( Cj*x0  - dj )  -- due to the inequality constraints y >= Cx - d
 | 
					
						
							|  |  |  |   double compute_y0(const VectorValues& x0) const { | 
					
						
							|  |  |  |     double y0 = -std::numeric_limits<double>::infinity(); | 
					
						
							|  |  |  |     BOOST_FOREACH(const LinearInequality::shared_ptr& factor, lp_.inequalities) { | 
					
						
							|  |  |  |       double error = factor->error(x0); | 
					
						
							|  |  |  |       if (error > y0) | 
					
						
							| 
									
										
										
										
											2016-02-16 02:53:22 +08:00
										 |  |  |       y0 = error; | 
					
						
							| 
									
										
										
										
											2016-01-25 09:08:14 +08:00
										 |  |  |     } | 
					
						
							|  |  |  |     return y0; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-02-02 10:10:16 +08:00
										 |  |  |   /// Collect all terms of a factor into a container.
 | 
					
						
							| 
									
										
										
										
											2016-02-16 02:53:22 +08:00
										 |  |  |   std::vector<std::pair<Key, Matrix> > collectTerms( | 
					
						
							|  |  |  |       const LinearInequality& factor) const { | 
					
						
							|  |  |  |     std::vector < std::pair<Key, Matrix> > terms; | 
					
						
							| 
									
										
										
										
											2016-01-25 09:08:14 +08:00
										 |  |  |     for (Factor::const_iterator it = factor.begin(); it != factor.end(); it++) { | 
					
						
							|  |  |  |       terms.push_back(make_pair(*it, factor.getA(it))); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     return terms; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /// Turn Cx <= d into Cx - y <= d factors
 | 
					
						
							| 
									
										
										
										
											2016-01-26 08:24:37 +08:00
										 |  |  |   InequalityFactorGraph addSlackVariableToInequalities(Key yKey, | 
					
						
							|  |  |  |       const InequalityFactorGraph& inequalities) const { | 
					
						
							| 
									
										
										
										
											2016-01-25 09:08:14 +08:00
										 |  |  |     InequalityFactorGraph slackInequalities; | 
					
						
							|  |  |  |     BOOST_FOREACH(const LinearInequality::shared_ptr& factor, lp_.inequalities) { | 
					
						
							| 
									
										
										
										
											2016-01-26 08:24:37 +08:00
										 |  |  |       std::vector<std::pair<Key, Matrix> > terms = collectTerms(*factor); // Cx
 | 
					
						
							|  |  |  |       terms.push_back(make_pair(yKey, Matrix::Constant(1, 1, -1.0)));// -y
 | 
					
						
							| 
									
										
										
										
											2016-01-25 09:08:14 +08:00
										 |  |  |       double d = factor->getb()[0]; | 
					
						
							|  |  |  |       slackInequalities.push_back(LinearInequality(terms, d, factor->dualKey())); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     return slackInequalities; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // friend class for unit-testing private methods
 | 
					
						
							|  |  |  |   FRIEND_TEST(LPInitSolverMatlab, initialization); | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | } |