| 
									
										
										
										
											2019-05-25 16:58:05 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  *  @file  testSmartStereoFactor_iSAM2.cpp | 
					
						
							|  |  |  |  *  @brief Unit tests for ProjectionFactor Class | 
					
						
							|  |  |  |  *  @author Jose Luis Blanco-Claraco | 
					
						
							|  |  |  |  *  @date   May 2019 | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  *  @note Originally based on ISAM2_SmartFactorStereo.cpp by Nghia Ho | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <CppUnitLite/TestHarness.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <gtsam/base/debug.h>
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/ISAM2.h>
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | 
					
						
							|  |  |  | #include <gtsam_unstable/slam/SmartStereoProjectionPoseFactor.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <array>
 | 
					
						
							|  |  |  | #include <fstream>
 | 
					
						
							|  |  |  | #include <iostream>
 | 
					
						
							|  |  |  | #include <sstream>
 | 
					
						
							|  |  |  | #include <string>
 | 
					
						
							|  |  |  | #include <vector>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Set to 1 to enable verbose output of intermediary results
 | 
					
						
							|  |  |  | #define TEST_VERBOSE_OUTPUT 0
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if TEST_VERBOSE_OUTPUT
 | 
					
						
							|  |  |  | #define TEST_COUT(ARGS_) std::cout << ARGS_
 | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  | #define TEST_COUT(ARGS_) void(0)
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Tolerance for ground-truth pose comparison:
 | 
					
						
							|  |  |  | static const double tol = 1e-3; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Synthetic dataset generated with rwt
 | 
					
						
							|  |  |  | // (https://github.com/jlblancoc/recursive-world-toolkit)
 | 
					
						
							|  |  |  | // Camera parameters
 | 
					
						
							|  |  |  | const double fx = 200.0; | 
					
						
							|  |  |  | const double fy = 150.0; | 
					
						
							|  |  |  | const double cx = 512.0; | 
					
						
							|  |  |  | const double cy = 384.0; | 
					
						
							|  |  |  | const double baseline = 0.2; // meters
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | using timestep_t = std::size_t; | 
					
						
							|  |  |  | using lm_id_t = int; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | struct stereo_meas_t { | 
					
						
							|  |  |  |   stereo_meas_t(lm_id_t id, double lu, double ru, double v_lr) | 
					
						
							|  |  |  |       : lm_id{id}, left_u{lu}, right_u{ru}, v{v_lr} {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   lm_id_t lm_id{-1}; // landmark id
 | 
					
						
							|  |  |  |   double left_u{0}, right_u{0}, v{0}; | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | static std::map<timestep_t, std::vector<stereo_meas_t>> dataset = { | 
					
						
							|  |  |  |     {0, | 
					
						
							|  |  |  |      {{0, 911.99993896, 712.00000000, 384.0}, | 
					
						
							|  |  |  |       {159, 311.99996948, 211.99996948, 384.0}, | 
					
						
							|  |  |  |       {3, 378.66665649, 312.00000000, 384.0}, | 
					
						
							|  |  |  |       {2, 645.33331299, 578.66662598, 384.0}, | 
					
						
							|  |  |  |       {157, 111.99994659, 11.99993896, 384.0}, | 
					
						
							|  |  |  |       {4, 578.66662598, 545.33331299, 384.0}, | 
					
						
							|  |  |  |       {5, 445.33331299, 412.00000000, 384.0}, | 
					
						
							|  |  |  |       {6, 562.00000000, 537.00000000, 384.0}}}, | 
					
						
							|  |  |  |     {1, | 
					
						
							|  |  |  |      {{0, 1022.06353760, 762.57519531, 384.0}, | 
					
						
							|  |  |  |       {159, 288.30487061, 177.80273438, 384.0}, | 
					
						
							|  |  |  |       {2, 655.30645752, 583.12127686, 384.0}, | 
					
						
							|  |  |  |       {3, 368.60937500, 297.43176270, 384.0}, | 
					
						
							|  |  |  |       {4, 581.82666016, 547.16766357, 384.0}, | 
					
						
							|  |  |  |       {5, 443.66183472, 409.23681641, 384.0}, | 
					
						
							|  |  |  |       {6, 564.35980225, 538.62115479, 384.0}, | 
					
						
							|  |  |  |       {7, 461.66418457, 436.05477905, 384.0}, | 
					
						
							|  |  |  |       {8, 550.32220459, 531.75256348, 384.0}, | 
					
						
							|  |  |  |       {9, 476.17767334, 457.67541504, 384.0}}}, | 
					
						
							|  |  |  |     {2, | 
					
						
							|  |  |  |      {{159, 257.97128296, 134.26287842, 384.0}, | 
					
						
							|  |  |  |       {2, 666.87255859, 588.07275391, 384.0}, | 
					
						
							|  |  |  |       {3, 356.53823853, 280.10061646, 384.0}, | 
					
						
							|  |  |  |       {4, 585.10949707, 548.99212646, 384.0}, | 
					
						
							|  |  |  |       {5, 441.66403198, 406.05108643, 384.0}, | 
					
						
							|  |  |  |       {6, 566.75402832, 540.21868896, 384.0}, | 
					
						
							|  |  |  |       {7, 461.16207886, 434.90002441, 384.0}, | 
					
						
							|  |  |  |       {8, 552.28387451, 533.30230713, 384.0}, | 
					
						
							|  |  |  |       {9, 476.63549805, 457.79418945, 384.0}, | 
					
						
							|  |  |  |       {10, 546.48394775, 530.53009033, 384.0}}}, | 
					
						
							|  |  |  |     {3, | 
					
						
							|  |  |  |      {{159, 218.10592651, 77.30914307, 384.0}, | 
					
						
							|  |  |  |       {2, 680.54644775, 593.68103027, 384.0}, | 
					
						
							|  |  |  |       {3, 341.92507935, 259.28231812, 384.0}, | 
					
						
							|  |  |  |       {4, 588.53289795, 550.80499268, 384.0}, | 
					
						
							|  |  |  |       {5, 439.29989624, 402.39105225, 384.0}, | 
					
						
							|  |  |  |       {6, 569.18627930, 541.78991699, 384.0}, | 
					
						
							|  |  |  |       {7, 460.47863770, 433.51678467, 384.0}, | 
					
						
							|  |  |  |       {8, 554.24902344, 534.82952881, 384.0}, | 
					
						
							|  |  |  |       {9, 477.00451660, 457.80438232, 384.0}, | 
					
						
							|  |  |  |       {10, 548.33770752, 532.07501221, 384.0}, | 
					
						
							|  |  |  |       {11, 483.58688354, 467.47830200, 384.0}, | 
					
						
							|  |  |  |       {12, 542.36785889, 529.29321289, 384.0}}}, | 
					
						
							|  |  |  |     {4, | 
					
						
							|  |  |  |      {{2, 697.09454346, 600.18432617, 384.0}, | 
					
						
							|  |  |  |       {3, 324.03643799, 233.97094727, 384.0}, | 
					
						
							|  |  |  |       {4, 592.11877441, 552.60449219, 384.0}, | 
					
						
							|  |  |  |       {5, 436.52197266, 398.19531250, 384.0}, | 
					
						
							|  |  |  |       {6, 571.66101074, 543.33209229, 384.0}, | 
					
						
							|  |  |  |       {7, 459.59658813, 431.88333130, 384.0}, | 
					
						
							|  |  |  |       {8, 556.21801758, 536.33258057, 384.0}, | 
					
						
							|  |  |  |       {9, 477.27893066, 457.69882202, 384.0}, | 
					
						
							|  |  |  |       {10, 550.18920898, 533.60003662, 384.0}, | 
					
						
							|  |  |  |       {11, 484.24472046, 467.86862183, 384.0}, | 
					
						
							|  |  |  |       {12, 544.14727783, 530.86157227, 384.0}, | 
					
						
							|  |  |  |       {13, 491.26141357, 478.11267090, 384.0}, | 
					
						
							|  |  |  |       {14, 541.29949951, 529.57086182, 384.0}, | 
					
						
							|  |  |  |       {15, 494.58111572, 482.95935059, 384.0}}}}; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // clang-format off
 | 
					
						
							|  |  |  | /*
 | 
					
						
							|  |  |  | % Ground truth path of the SENSOR, and the ROBOT | 
					
						
							|  |  |  | % STEP     X       Y        Z        QR        QX      QY      QZ     |    X Y Z        QR        QX      QY      QZ | 
					
						
							|  |  |  |  ---------------------------------------------------------------------------------------------------------------------------------------- | 
					
						
							|  |  |  |      0 0.000000  0.000000 0.000000 0.500000 -0.500000 0.500000 -0.500000 0.000000  0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 | 
					
						
							|  |  |  |      1 0.042019 -0.008403 0.000000 0.502446 -0.502446 0.497542 -0.497542 0.042019 -0.008403 0.000000 0.999988 0.000000 0.000000 0.004905 | 
					
						
							|  |  |  |      2 0.084783 -0.016953 0.000000 0.504879 -0.504879 0.495073 -0.495073 0.084783 -0.016953 0.000000 0.999952 0.000000 0.000000 0.009806 | 
					
						
							|  |  |  |      3 0.128305 -0.025648 0.000000 0.507299 -0.507299 0.492592 -0.492592 0.128305 -0.025648 0.000000 0.999892 0.000000 0.000000 0.014707 | 
					
						
							|  |  |  |      4 0.172605 -0.034490 0.000000 0.509709 -0.509709 0.490098 -0.490098 0.172605 -0.034490 0.000000 0.999808 0.000000 0.000000 0.019611 | 
					
						
							|  |  |  | */ | 
					
						
							|  |  |  | // clang-format on
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Ground truth using camera pose = vehicle frame
 | 
					
						
							|  |  |  | // The table above uses:
 | 
					
						
							|  |  |  | //   camera +x = vehicle -y
 | 
					
						
							|  |  |  | //   camera +y = vehicle -z
 | 
					
						
							|  |  |  | //   camera +z = vehicle +x
 | 
					
						
							|  |  |  | static const std::map<timestep_t, gtsam::Point3> gt_positions = { | 
					
						
							|  |  |  |     {0, {0.000000, 0.000000, 0.0}}, | 
					
						
							|  |  |  |     {1, {0.042019, -0.008403, 0.0}}, | 
					
						
							|  |  |  |     {2, {0.084783, -0.016953, 0.0}}, | 
					
						
							|  |  |  |     {3, {0.128305, -0.025648, 0.0}}, | 
					
						
							|  |  |  |     {4, {0.172605, -0.034490, 0.0}}}; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Batch version, to compare against iSAM2 solution.
 | 
					
						
							|  |  |  | TEST(testISAM2SmartFactor, Stereo_Batch) { | 
					
						
							|  |  |  |   TEST_COUT("============ Running: Batch ============\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   using namespace gtsam; | 
					
						
							|  |  |  |   using symbol_shorthand::V; | 
					
						
							|  |  |  |   using symbol_shorthand::X; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   const auto K = | 
					
						
							| 
									
										
										
										
											2023-01-18 06:05:12 +08:00
										 |  |  |       std::make_shared<Cal3_S2Stereo>(fx, fy, .0, cx, cy, baseline); | 
					
						
							| 
									
										
										
										
											2019-05-25 16:58:05 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   // Pose prior - at identity
 | 
					
						
							|  |  |  |   auto priorPoseNoise = noiseModel::Diagonal::Sigmas( | 
					
						
							|  |  |  |       (Vector(6) << Vector3::Constant(0.2), Vector3::Constant(0.2)).finished()); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-05-27 07:56:26 +08:00
										 |  |  |   // Map: landmark_id => smart_factor_index inside iSAM2
 | 
					
						
							| 
									
										
										
										
											2019-05-25 16:58:05 +08:00
										 |  |  |   std::map<lm_id_t, FactorIndex> lm2factor; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Storage of smart factors:
 | 
					
						
							|  |  |  |   std::map<lm_id_t, SmartStereoProjectionPoseFactor::shared_ptr> smartFactors; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   NonlinearFactorGraph batch_graph; | 
					
						
							|  |  |  |   Values batch_values; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Run one timestep at once:
 | 
					
						
							|  |  |  |   for (const auto &entries : dataset) { | 
					
						
							|  |  |  |     // 1) Process new observations:
 | 
					
						
							|  |  |  |     // ------------------------------
 | 
					
						
							|  |  |  |     const auto kf_id = entries.first; | 
					
						
							|  |  |  |     const std::vector<stereo_meas_t> &obs = entries.second; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for (const stereo_meas_t &stObs : obs) { | 
					
						
							|  |  |  |       if (smartFactors.count(stObs.lm_id) == 0) { | 
					
						
							|  |  |  |         auto noise = noiseModel::Isotropic::Sigma(3, 0.1); | 
					
						
							|  |  |  |         SmartProjectionParams parm(HESSIAN, ZERO_ON_DEGENERACY); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         smartFactors[stObs.lm_id] = | 
					
						
							| 
									
										
										
										
											2023-01-18 06:05:12 +08:00
										 |  |  |             std::make_shared<SmartStereoProjectionPoseFactor>(noise, parm); | 
					
						
							| 
									
										
										
										
											2019-05-25 16:58:05 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         batch_graph.push_back(smartFactors[stObs.lm_id]); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       TEST_COUT("Adding stereo observation from KF #" << kf_id << " for LM #" | 
					
						
							|  |  |  |                                                       << stObs.lm_id << "\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       smartFactors[stObs.lm_id]->add( | 
					
						
							|  |  |  |           StereoPoint2(stObs.left_u, stObs.right_u, stObs.v), X(kf_id), K); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // prior, for the first keyframe:
 | 
					
						
							|  |  |  |     if (kf_id == 0) { | 
					
						
							| 
									
										
										
										
											2022-07-08 00:31:27 +08:00
										 |  |  |       batch_graph.addPrior(X(kf_id), Pose3::Identity(), priorPoseNoise); | 
					
						
							| 
									
										
										
										
											2019-05-25 16:58:05 +08:00
										 |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-07-08 00:31:27 +08:00
										 |  |  |     batch_values.insert(X(kf_id), Pose3::Identity()); | 
					
						
							| 
									
										
										
										
											2019-05-25 16:58:05 +08:00
										 |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   LevenbergMarquardtParams parameters; | 
					
						
							|  |  |  | #if TEST_VERBOSE_OUTPUT
 | 
					
						
							|  |  |  |   parameters.verbosity = NonlinearOptimizerParams::LINEAR; | 
					
						
							|  |  |  |   parameters.verbosityLM = LevenbergMarquardtParams::TRYDELTA; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   LevenbergMarquardtOptimizer lm(batch_graph, batch_values, parameters); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   Values finalEstimate = lm.optimize(); | 
					
						
							|  |  |  | #if TEST_VERBOSE_OUTPUT
 | 
					
						
							|  |  |  |   finalEstimate.print("LevMarq estimate:"); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // GT:
 | 
					
						
							|  |  |  |   //   camera +x = vehicle -y
 | 
					
						
							|  |  |  |   //   camera +y = vehicle -z
 | 
					
						
							|  |  |  |   //   camera +z = vehicle +x
 | 
					
						
							|  |  |  |   for (const auto > : gt_positions) { | 
					
						
							|  |  |  |     const Pose3 p = finalEstimate.at<Pose3>(X(gt.first)); | 
					
						
							|  |  |  |     EXPECT(assert_equal(p.x(), -gt.second.y(), tol)); | 
					
						
							|  |  |  |     EXPECT(assert_equal(p.y(), -gt.second.z(), tol)); | 
					
						
							|  |  |  |     EXPECT(assert_equal(p.z(), gt.second.x(), tol)); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | TEST(testISAM2SmartFactor, Stereo_iSAM2) { | 
					
						
							|  |  |  |   TEST_COUT("======= Running: iSAM2 ==========\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if TEST_VERBOSE_OUTPUT
 | 
					
						
							|  |  |  |   SETDEBUG("ISAM2 update", true); | 
					
						
							|  |  |  |   // SETDEBUG("ISAM2 update verbose",true);
 | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   using namespace gtsam; | 
					
						
							|  |  |  |   using symbol_shorthand::V; | 
					
						
							|  |  |  |   using symbol_shorthand::X; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   const auto K = | 
					
						
							| 
									
										
										
										
											2023-01-18 06:05:12 +08:00
										 |  |  |       std::make_shared<Cal3_S2Stereo>(fx, fy, .0, cx, cy, baseline); | 
					
						
							| 
									
										
										
										
											2019-05-25 16:58:05 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   ISAM2Params parameters; | 
					
						
							|  |  |  |   parameters.relinearizeThreshold = 0.01; | 
					
						
							|  |  |  |   parameters.evaluateNonlinearError = true; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Do not cache smart factors:
 | 
					
						
							|  |  |  |   parameters.cacheLinearizedFactors = false; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Important: must set relinearizeSkip=1 to additional calls to update() to
 | 
					
						
							|  |  |  |   // have a real effect.
 | 
					
						
							|  |  |  |   parameters.relinearizeSkip = 1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   ISAM2 isam(parameters); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Pose prior - at identity
 | 
					
						
							|  |  |  |   auto priorPoseNoise = noiseModel::Diagonal::Sigmas( | 
					
						
							|  |  |  |       (Vector(6) << Vector3::Constant(0.2), Vector3::Constant(0.2)).finished()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Map: landmark_id => smart_factor_index inside iSAM2
 | 
					
						
							|  |  |  |   std::map<lm_id_t, FactorIndex> lm2factor; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Storage of smart factors:
 | 
					
						
							|  |  |  |   std::map<lm_id_t, SmartStereoProjectionPoseFactor::shared_ptr> smartFactors; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-07-08 00:31:27 +08:00
										 |  |  |   Pose3 lastKeyframePose = Pose3::Identity(); | 
					
						
							| 
									
										
										
										
											2019-05-25 16:58:05 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   // Run one timestep at once:
 | 
					
						
							|  |  |  |   for (const auto &entries : dataset) { | 
					
						
							|  |  |  |     // 1) Process new observations:
 | 
					
						
							|  |  |  |     // ------------------------------
 | 
					
						
							|  |  |  |     const auto kf_id = entries.first; | 
					
						
							|  |  |  |     const std::vector<stereo_meas_t> &obs = entries.second; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Special instructions for using iSAM2 + smart factors:
 | 
					
						
							|  |  |  |     // Must fill factorNewAffectedKeys:
 | 
					
						
							|  |  |  |     FastMap<FactorIndex, KeySet> factorNewAffectedKeys; | 
					
						
							|  |  |  |     NonlinearFactorGraph newFactors; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Map: factor index in the internal graph of iSAM2 => landmark_id
 | 
					
						
							|  |  |  |     std::map<FactorIndex, lm_id_t> newFactor2lm; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for (const stereo_meas_t &stObs : obs) { | 
					
						
							|  |  |  |       if (smartFactors.count(stObs.lm_id) == 0) { | 
					
						
							|  |  |  |         auto noise = noiseModel::Isotropic::Sigma(3, 0.1); | 
					
						
							|  |  |  |         SmartProjectionParams params(HESSIAN, ZERO_ON_DEGENERACY); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         smartFactors[stObs.lm_id] = | 
					
						
							| 
									
										
										
										
											2023-01-18 06:05:12 +08:00
										 |  |  |             std::make_shared<SmartStereoProjectionPoseFactor>(noise, params); | 
					
						
							| 
									
										
										
										
											2019-05-25 16:58:05 +08:00
										 |  |  |         newFactor2lm[newFactors.size()] = stObs.lm_id; | 
					
						
							|  |  |  |         newFactors.push_back(smartFactors[stObs.lm_id]); | 
					
						
							|  |  |  |       } else { | 
					
						
							|  |  |  |         // Only if the factor *already* existed:
 | 
					
						
							|  |  |  |         factorNewAffectedKeys[lm2factor.at(stObs.lm_id)].insert(X(kf_id)); | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       TEST_COUT("Adding stereo observation from KF #" << kf_id << " for LM #" | 
					
						
							|  |  |  |                                                       << stObs.lm_id << "\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       smartFactors[stObs.lm_id]->add( | 
					
						
							|  |  |  |           StereoPoint2(stObs.left_u, stObs.right_u, stObs.v), X(kf_id), K); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // prior, for the first keyframe:
 | 
					
						
							|  |  |  |     if (kf_id == 0) { | 
					
						
							| 
									
										
										
										
											2022-07-08 00:31:27 +08:00
										 |  |  |       newFactors.addPrior(X(kf_id), Pose3::Identity(), priorPoseNoise); | 
					
						
							| 
									
										
										
										
											2019-05-25 16:58:05 +08:00
										 |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // 2) Run iSAM2:
 | 
					
						
							|  |  |  |     // ------------------------------
 | 
					
						
							|  |  |  |     Values newValues; | 
					
						
							|  |  |  |     newValues.insert(X(kf_id), lastKeyframePose); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     TEST_COUT("Running iSAM2 for frame: " << kf_id << "\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ISAM2UpdateParams updateParams; | 
					
						
							|  |  |  |     updateParams.newAffectedKeys = std::move(factorNewAffectedKeys); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     ISAM2Result res = isam.update(newFactors, newValues, updateParams); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     for (const auto &f2l : newFactor2lm) | 
					
						
							|  |  |  |       lm2factor[f2l.second] = res.newFactorsIndices.at(f2l.first); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     TEST_COUT("error before1: " << res.errorBefore.value() << "\n"); | 
					
						
							|  |  |  |     TEST_COUT("error after1 : " << res.errorAfter.value() << "\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Additional refining steps:
 | 
					
						
							|  |  |  |     ISAM2Result res2 = isam.update(); | 
					
						
							|  |  |  |     TEST_COUT("error before2: " << res2.errorBefore.value() << "\n"); | 
					
						
							|  |  |  |     TEST_COUT("error after2 : " << res2.errorAfter.value() << "\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Values currentEstimate = isam.calculateEstimate(); | 
					
						
							|  |  |  | #if TEST_VERBOSE_OUTPUT
 | 
					
						
							|  |  |  |     currentEstimate.print("currentEstimate:"); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Keep last KF pose as initial pose of the next one, to reduce the need
 | 
					
						
							|  |  |  |     // to run more non-linear iterations:
 | 
					
						
							|  |  |  |     lastKeyframePose = currentEstimate.at(X(kf_id)).cast<Pose3>(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   } // end for each timestep
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   Values finalEstimate = isam.calculateEstimate(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // GT:
 | 
					
						
							|  |  |  |   //   camera +x = vehicle -y
 | 
					
						
							|  |  |  |   //   camera +y = vehicle -z
 | 
					
						
							|  |  |  |   //   camera +z = vehicle +x
 | 
					
						
							|  |  |  |   for (const auto > : gt_positions) { | 
					
						
							|  |  |  |     const Pose3 p = finalEstimate.at<Pose3>(X(gt.first)); | 
					
						
							|  |  |  |     EXPECT(assert_equal(p.x(), -gt.second.y(), tol)); | 
					
						
							|  |  |  |     EXPECT(assert_equal(p.y(), -gt.second.z(), tol)); | 
					
						
							|  |  |  |     EXPECT(assert_equal(p.z(), gt.second.x(), tol)); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* *************************************************************************
 | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | int main() { | 
					
						
							|  |  |  |   TestResult tr; | 
					
						
							|  |  |  |   return TestRegistry::runAllTests(tr); | 
					
						
							|  |  |  | } |