290 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
		
		
			
		
	
	
			290 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
| 
								 | 
							
								/* ----------------------------------------------------------------------------
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
							 | 
						||
| 
								 | 
							
								 * Atlanta, Georgia 30332-0415
							 | 
						||
| 
								 | 
							
								 * All Rights Reserved
							 | 
						||
| 
								 | 
							
								 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 * See LICENSE for the license information
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 * -------------------------------------------------------------------------- */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/**
							 | 
						||
| 
								 | 
							
								 * @file     ActiveSetSolver-inl.h
							 | 
						||
| 
								 | 
							
								 * @brief    Implmentation of ActiveSetSolver.
							 | 
						||
| 
								 | 
							
								 * @author   Ivan Dario Jimenez
							 | 
						||
| 
								 | 
							
								 * @author   Duy Nguyen Ta
							 | 
						||
| 
								 | 
							
								 * @date     2/11/16
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <gtsam_unstable/linear/InfeasibleInitialValues.h>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/******************************************************************************/
							 | 
						||
| 
								 | 
							
								// Convenient macros to reduce syntactic noise. undef later.
							 | 
						||
| 
								 | 
							
								#define Template template <class PROBLEM, class POLICY, class INITSOLVER>
							 | 
						||
| 
								 | 
							
								#define This ActiveSetSolver<PROBLEM, POLICY, INITSOLVER>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/******************************************************************************/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace gtsam {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* We have to make sure the new solution with alpha satisfies all INACTIVE inequality constraints
							 | 
						||
| 
								 | 
							
								 * If some inactive inequality constraints complain about the full step (alpha = 1),
							 | 
						||
| 
								 | 
							
								 * we have to adjust alpha to stay within the inequality constraints' feasible regions.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * For each inactive inequality j:
							 | 
						||
| 
								 | 
							
								 *  - We already have: aj'*xk - bj <= 0, since xk satisfies all inequality constraints
							 | 
						||
| 
								 | 
							
								 *  - We want: aj'*(xk + alpha*p) - bj <= 0
							 | 
						||
| 
								 | 
							
								 *  - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0
							 | 
						||
| 
								 | 
							
								 *  it's good!
							 | 
						||
| 
								 | 
							
								 *  - We only care when aj'*p > 0. In this case, we need to choose alpha so that
							 | 
						||
| 
								 | 
							
								 *  aj'*xk + alpha*aj'*p - bj <= 0  --> alpha <= (bj - aj'*xk) / (aj'*p)
							 | 
						||
| 
								 | 
							
								 *  We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p)
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * We want the minimum of all those alphas among all inactive inequality.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								Template boost::tuple<double, int> This::computeStepSize(
							 | 
						||
| 
								 | 
							
								    const InequalityFactorGraph& workingSet, const VectorValues& xk,
							 | 
						||
| 
								 | 
							
								    const VectorValues& p, const double& maxAlpha) const {
							 | 
						||
| 
								 | 
							
								  double minAlpha = maxAlpha;
							 | 
						||
| 
								 | 
							
								  int closestFactorIx = -1;
							 | 
						||
| 
								 | 
							
								  for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
							 | 
						||
| 
								 | 
							
								    const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
							 | 
						||
| 
								 | 
							
								    double b = factor->getb()[0];
							 | 
						||
| 
								 | 
							
								    // only check inactive factors
							 | 
						||
| 
								 | 
							
								    if (!factor->active()) {
							 | 
						||
| 
								 | 
							
								      // Compute a'*p
							 | 
						||
| 
								 | 
							
								      double aTp = factor->dotProductRow(p);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // Check if  a'*p >0. Don't care if it's not.
							 | 
						||
| 
								 | 
							
								      if (aTp <= 0)
							 | 
						||
| 
								 | 
							
								        continue;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // Compute a'*xk
							 | 
						||
| 
								 | 
							
								      double aTx = factor->dotProductRow(xk);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								      // alpha = (b - a'*xk) / (a'*p)
							 | 
						||
| 
								 | 
							
								      double alpha = (b - aTx) / aTp;
							 | 
						||
| 
								 | 
							
								      // We want the minimum of all those max alphas
							 | 
						||
| 
								 | 
							
								      if (alpha < minAlpha) {
							 | 
						||
| 
								 | 
							
								        closestFactorIx = factorIx;
							 | 
						||
| 
								 | 
							
								        minAlpha = alpha;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return boost::make_tuple(minAlpha, closestFactorIx);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/******************************************************************************/
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								 * The goal of this function is to find currently active inequality constraints
							 | 
						||
| 
								 | 
							
								 * that violate the condition to be active. The one that violates the condition
							 | 
						||
| 
								 | 
							
								 * the most will be removed from the active set. See Nocedal06book, pg 469-471
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * Find the BAD active inequality that pulls x strongest to the wrong direction
							 | 
						||
| 
								 | 
							
								 * of its constraint (i.e. it is pulling towards >0, while its feasible region is <=0)
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * For active inequality constraints (those that are enforced as equality constraints
							 | 
						||
| 
								 | 
							
								 * in the current working set), we want lambda < 0.
							 | 
						||
| 
								 | 
							
								 * This is because:
							 | 
						||
| 
								 | 
							
								 *   - From the Lagrangian L = f - lambda*c, we know that the constraint force
							 | 
						||
| 
								 | 
							
								 *     is (lambda * \grad c) = \grad f. Intuitively, to keep the solution x stay
							 | 
						||
| 
								 | 
							
								 *     on the constraint surface, the constraint force has to balance out with
							 | 
						||
| 
								 | 
							
								 *     other unconstrained forces that are pulling x towards the unconstrained
							 | 
						||
| 
								 | 
							
								 *     minimum point. The other unconstrained forces are pulling x toward (-\grad f),
							 | 
						||
| 
								 | 
							
								 *     hence the constraint force has to be exactly \grad f, so that the total
							 | 
						||
| 
								 | 
							
								 *     force is 0.
							 | 
						||
| 
								 | 
							
								 *   - We also know that  at the constraint surface c(x)=0, \grad c points towards + (>= 0),
							 | 
						||
| 
								 | 
							
								 *     while we are solving for - (<=0) constraint.
							 | 
						||
| 
								 | 
							
								 *   - We want the constraint force (lambda * \grad c) to pull x towards the - (<=0) direction
							 | 
						||
| 
								 | 
							
								 *     i.e., the opposite direction of \grad c where the inequality constraint <=0 is satisfied.
							 | 
						||
| 
								 | 
							
								 *     That means we want lambda < 0.
							 | 
						||
| 
								 | 
							
								 *   - This is because when the constrained force pulls x towards the infeasible region (+),
							 | 
						||
| 
								 | 
							
								 *     the unconstrained force is pulling x towards the opposite direction into
							 | 
						||
| 
								 | 
							
								 *     the feasible region (again because the total force has to be 0 to make x stay still)
							 | 
						||
| 
								 | 
							
								 *     So we can drop this constraint to have a lower error but feasible solution.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * In short, active inequality constraints with lambda > 0 are BAD, because they
							 | 
						||
| 
								 | 
							
								 * violate the condition to be active.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 * And we want to remove the worst one with the largest lambda from the active set.
							 | 
						||
| 
								 | 
							
								 *
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								Template int This::identifyLeavingConstraint(
							 | 
						||
| 
								 | 
							
								    const InequalityFactorGraph& workingSet,
							 | 
						||
| 
								 | 
							
								    const VectorValues& lambdas) const {
							 | 
						||
| 
								 | 
							
								  int worstFactorIx = -1;
							 | 
						||
| 
								 | 
							
								  // preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is either
							 | 
						||
| 
								 | 
							
								  // inactive or a good inequality constraint, so we don't care!
							 | 
						||
| 
								 | 
							
								  double maxLambda = 0.0;
							 | 
						||
| 
								 | 
							
								  for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
							 | 
						||
| 
								 | 
							
								    const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
							 | 
						||
| 
								 | 
							
								    if (factor->active()) {
							 | 
						||
| 
								 | 
							
								      double lambda = lambdas.at(factor->dualKey())[0];
							 | 
						||
| 
								 | 
							
								      if (lambda > maxLambda) {
							 | 
						||
| 
								 | 
							
								        worstFactorIx = factorIx;
							 | 
						||
| 
								 | 
							
								        maxLambda = lambda;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return worstFactorIx;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//******************************************************************************
							 | 
						||
| 
								 | 
							
								Template JacobianFactor::shared_ptr This::createDualFactor(
							 | 
						||
| 
								 | 
							
								    Key key, const InequalityFactorGraph& workingSet,
							 | 
						||
| 
								 | 
							
								    const VectorValues& delta) const {
							 | 
						||
| 
								 | 
							
								  // Transpose the A matrix of constrained factors to have the jacobian of the
							 | 
						||
| 
								 | 
							
								  // dual key
							 | 
						||
| 
								 | 
							
								  TermsContainer Aterms = collectDualJacobians<LinearEquality>(
							 | 
						||
| 
								 | 
							
								      key, problem_.equalities, equalityVariableIndex_);
							 | 
						||
| 
								 | 
							
								  TermsContainer AtermsInequalities = collectDualJacobians<LinearInequality>(
							 | 
						||
| 
								 | 
							
								      key, workingSet, inequalityVariableIndex_);
							 | 
						||
| 
								 | 
							
								  Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
							 | 
						||
| 
								 | 
							
								                AtermsInequalities.end());
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  // Collect the gradients of unconstrained cost factors to the b vector
							 | 
						||
| 
								 | 
							
								  if (Aterms.size() > 0) {
							 | 
						||
| 
								 | 
							
								    Vector b = problem_.costGradient(key, delta);
							 | 
						||
| 
								 | 
							
								    // to compute the least-square approximation of dual variables
							 | 
						||
| 
								 | 
							
								    return boost::make_shared<JacobianFactor>(Aterms, b);
							 | 
						||
| 
								 | 
							
								  } else {
							 | 
						||
| 
								 | 
							
								    return boost::make_shared<JacobianFactor>();
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/******************************************************************************/
							 | 
						||
| 
								 | 
							
								/*  This function will create a dual graph that solves for the
							 | 
						||
| 
								 | 
							
								 *  lagrange multipliers for the current working set.
							 | 
						||
| 
								 | 
							
								 *  You can use lagrange multipliers as a necessary condition for optimality.
							 | 
						||
| 
								 | 
							
								 *  The factor graph that is being solved is f' = -lambda * g'
							 | 
						||
| 
								 | 
							
								 *  where f is the optimized function and g is the function resulting from
							 | 
						||
| 
								 | 
							
								 *  aggregating the working set.
							 | 
						||
| 
								 | 
							
								 *  The lambdas give you information about the feasibility of a constraint.
							 | 
						||
| 
								 | 
							
								 *  if lambda < 0  the constraint is Ok
							 | 
						||
| 
								 | 
							
								 *  if lambda = 0  you are on the constraint
							 | 
						||
| 
								 | 
							
								 *  if lambda > 0  you are violating the constraint.
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								Template GaussianFactorGraph::shared_ptr This::buildDualGraph(
							 | 
						||
| 
								 | 
							
								    const InequalityFactorGraph& workingSet, const VectorValues& delta) const {
							 | 
						||
| 
								 | 
							
								  GaussianFactorGraph::shared_ptr dualGraph(new GaussianFactorGraph());
							 | 
						||
| 
								 | 
							
								  for (Key key : constrainedKeys_) {
							 | 
						||
| 
								 | 
							
								    // Each constrained key becomes a factor in the dual graph
							 | 
						||
| 
								 | 
							
								    JacobianFactor::shared_ptr dualFactor =
							 | 
						||
| 
								 | 
							
								        createDualFactor(key, workingSet, delta);
							 | 
						||
| 
								 | 
							
								    if (!dualFactor->empty()) dualGraph->push_back(dualFactor);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return dualGraph;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//******************************************************************************
							 | 
						||
| 
								 | 
							
								Template GaussianFactorGraph
							 | 
						||
| 
								 | 
							
								This::buildWorkingGraph(const InequalityFactorGraph& workingSet,
							 | 
						||
| 
								 | 
							
								                        const VectorValues& xk) const {
							 | 
						||
| 
								 | 
							
								  GaussianFactorGraph workingGraph;
							 | 
						||
| 
								 | 
							
								  workingGraph.push_back(POLICY::buildCostFunction(problem_, xk));
							 | 
						||
| 
								 | 
							
								  workingGraph.push_back(problem_.equalities);
							 | 
						||
| 
								 | 
							
								  for (const LinearInequality::shared_ptr& factor : workingSet)
							 | 
						||
| 
								 | 
							
								    if (factor->active()) workingGraph.push_back(factor);
							 | 
						||
| 
								 | 
							
								  return workingGraph;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//******************************************************************************
							 | 
						||
| 
								 | 
							
								Template typename This::State This::iterate(
							 | 
						||
| 
								 | 
							
								    const typename This::State& state) const {
							 | 
						||
| 
								 | 
							
								  // Algorithm 16.3 from Nocedal06book.
							 | 
						||
| 
								 | 
							
								  // Solve with the current working set eqn 16.39, but instead of solving for p
							 | 
						||
| 
								 | 
							
								  // solve for x
							 | 
						||
| 
								 | 
							
								  GaussianFactorGraph workingGraph =
							 | 
						||
| 
								 | 
							
								      buildWorkingGraph(state.workingSet, state.values);
							 | 
						||
| 
								 | 
							
								  VectorValues newValues = workingGraph.optimize();
							 | 
						||
| 
								 | 
							
								  // If we CAN'T move further
							 | 
						||
| 
								 | 
							
								  // if p_k = 0 is the original condition, modified by Duy to say that the state
							 | 
						||
| 
								 | 
							
								  // update is zero.
							 | 
						||
| 
								 | 
							
								  if (newValues.equals(state.values, 1e-7)) {
							 | 
						||
| 
								 | 
							
								    // Compute lambda from the dual graph
							 | 
						||
| 
								 | 
							
								    GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet,
							 | 
						||
| 
								 | 
							
								        newValues);
							 | 
						||
| 
								 | 
							
								    VectorValues duals = dualGraph->optimize();
							 | 
						||
| 
								 | 
							
								    int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
							 | 
						||
| 
								 | 
							
								    // If all inequality constraints are satisfied: We have the solution!!
							 | 
						||
| 
								 | 
							
								    if (leavingFactor < 0) {
							 | 
						||
| 
								 | 
							
								      return State(newValues, duals, state.workingSet, true,
							 | 
						||
| 
								 | 
							
								          state.iterations + 1);
							 | 
						||
| 
								 | 
							
								    } else {
							 | 
						||
| 
								 | 
							
								      // Inactivate the leaving constraint
							 | 
						||
| 
								 | 
							
								      InequalityFactorGraph newWorkingSet = state.workingSet;
							 | 
						||
| 
								 | 
							
								      newWorkingSet.at(leavingFactor)->inactivate();
							 | 
						||
| 
								 | 
							
								      return State(newValues, duals, newWorkingSet, false,
							 | 
						||
| 
								 | 
							
								          state.iterations + 1);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  } else {
							 | 
						||
| 
								 | 
							
								    // If we CAN make some progress, i.e. p_k != 0
							 | 
						||
| 
								 | 
							
								    // Adapt stepsize if some inactive constraints complain about this move
							 | 
						||
| 
								 | 
							
								    double alpha;
							 | 
						||
| 
								 | 
							
								    int factorIx;
							 | 
						||
| 
								 | 
							
								    VectorValues p = newValues - state.values;
							 | 
						||
| 
								 | 
							
								    boost::tie(alpha, factorIx) = // using 16.41
							 | 
						||
| 
								 | 
							
								        computeStepSize(state.workingSet, state.values, p, POLICY::maxAlpha);
							 | 
						||
| 
								 | 
							
								    // also add to the working set the one that complains the most
							 | 
						||
| 
								 | 
							
								    InequalityFactorGraph newWorkingSet = state.workingSet;
							 | 
						||
| 
								 | 
							
								    if (factorIx >= 0)
							 | 
						||
| 
								 | 
							
								      newWorkingSet.at(factorIx)->activate();
							 | 
						||
| 
								 | 
							
								    // step!
							 | 
						||
| 
								 | 
							
								    newValues = state.values + alpha * p;
							 | 
						||
| 
								 | 
							
								    return State(newValues, state.duals, newWorkingSet, false,
							 | 
						||
| 
								 | 
							
								        state.iterations + 1);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//******************************************************************************
							 | 
						||
| 
								 | 
							
								Template InequalityFactorGraph This::identifyActiveConstraints(
							 | 
						||
| 
								 | 
							
								    const InequalityFactorGraph& inequalities,
							 | 
						||
| 
								 | 
							
								    const VectorValues& initialValues, const VectorValues& duals,
							 | 
						||
| 
								 | 
							
								    bool useWarmStart) const {
							 | 
						||
| 
								 | 
							
								  InequalityFactorGraph workingSet;
							 | 
						||
| 
								 | 
							
								  for (const LinearInequality::shared_ptr& factor : inequalities) {
							 | 
						||
| 
								 | 
							
								    LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
							 | 
						||
| 
								 | 
							
								    if (useWarmStart && duals.size() > 0) {
							 | 
						||
| 
								 | 
							
								      if (duals.exists(workingFactor->dualKey())) workingFactor->activate();
							 | 
						||
| 
								 | 
							
								      else workingFactor->inactivate();
							 | 
						||
| 
								 | 
							
								    } else {
							 | 
						||
| 
								 | 
							
								      double error = workingFactor->error(initialValues);
							 | 
						||
| 
								 | 
							
								      // Safety guard. This should not happen unless users provide a bad init
							 | 
						||
| 
								 | 
							
								      if (error > 0) throw InfeasibleInitialValues();
							 | 
						||
| 
								 | 
							
								      if (fabs(error) < 1e-7)
							 | 
						||
| 
								 | 
							
								        workingFactor->activate();
							 | 
						||
| 
								 | 
							
								      else
							 | 
						||
| 
								 | 
							
								        workingFactor->inactivate();
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    workingSet.push_back(workingFactor);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return workingSet;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//******************************************************************************
							 | 
						||
| 
								 | 
							
								Template std::pair<VectorValues, VectorValues> This::optimize(
							 | 
						||
| 
								 | 
							
								    const VectorValues& initialValues, const VectorValues& duals,
							 | 
						||
| 
								 | 
							
								    bool useWarmStart) const {
							 | 
						||
| 
								 | 
							
								  // Initialize workingSet from the feasible initialValues
							 | 
						||
| 
								 | 
							
								  InequalityFactorGraph workingSet = identifyActiveConstraints(
							 | 
						||
| 
								 | 
							
								      problem_.inequalities, initialValues, duals, useWarmStart);
							 | 
						||
| 
								 | 
							
								  State state(initialValues, duals, workingSet, false, 0);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /// main loop of the solver
							 | 
						||
| 
								 | 
							
								  while (!state.converged) state = iterate(state);
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  return std::make_pair(state.values, state.duals);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								//******************************************************************************
							 | 
						||
| 
								 | 
							
								Template std::pair<VectorValues, VectorValues> This::optimize() const {
							 | 
						||
| 
								 | 
							
								  INITSOLVER initSolver(problem_);
							 | 
						||
| 
								 | 
							
								  VectorValues initValues = initSolver.solve();
							 | 
						||
| 
								 | 
							
								  return optimize(initValues);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#undef Template
							 | 
						||
| 
								 | 
							
								#undef This
							 |