79 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Matlab
		
	
	
		
		
			
		
	
	
			79 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Matlab
		
	
	
|  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|  | % GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||
|  | % Atlanta, Georgia 30332-0415 | ||
|  | % All Rights Reserved | ||
|  | % Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  | % | ||
|  | % See LICENSE for the license information | ||
|  | % | ||
|  | % @brief Simple robotics example using the pre-built planar SLAM domain | ||
|  | % @author Alex Cunningham | ||
|  | % @author Frank Dellaert | ||
|  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|  | 
 | ||
|  | %% Create the same factor graph as in PlanarSLAMExample | ||
|  | i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3); | ||
|  | graph = planarSLAMGraph; | ||
|  | priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin | ||
|  | priorNoise = gtsamSharedNoiseModel_Sigmas([0.3; 0.3; 0.1]); | ||
|  | graph.addPrior(i1, priorMean, priorNoise); % add directly to graph | ||
|  | odometry = gtsamPose2(2.0, 0.0, 0.0); | ||
|  | odometryNoise = gtsamSharedNoiseModel_Sigmas([0.2; 0.2; 0.1]); | ||
|  | graph.addOdometry(i1, i2, odometry, odometryNoise); | ||
|  | graph.addOdometry(i2, i3, odometry, odometryNoise); | ||
|  | 
 | ||
|  | %% Except, for measurements we offer a choice | ||
|  | j1 = symbol('l',1); j2 = symbol('l',2); | ||
|  | degrees = pi/180; | ||
|  | noiseModel = gtsamSharedNoiseModel_Sigmas([0.1; 0.2]); | ||
|  | if 1 | ||
|  |     graph.addBearingRange(i1, j1, gtsamRot2(45*degrees), sqrt(4+4), noiseModel); | ||
|  |     graph.addBearingRange(i2, j1, gtsamRot2(90*degrees), 2, noiseModel); | ||
|  | else | ||
|  |     bearingModel = gtsamSharedNoiseModel_Sigmas(0.1);     | ||
|  |     graph.addBearing(i1, j1, gtsamRot2(45*degrees), bearingModel); | ||
|  |     graph.addBearing(i2, j1, gtsamRot2(90*degrees), bearingModel); | ||
|  | end | ||
|  | graph.addBearingRange(i3, j2, gtsamRot2(90*degrees), 2, noiseModel);     | ||
|  | 
 | ||
|  | %% Initialize MCMC sampler with ground truth | ||
|  | sample = planarSLAMValues; | ||
|  | sample.insertPose(i1, gtsamPose2(0,0,0)); | ||
|  | sample.insertPose(i2, gtsamPose2(2,0,0)); | ||
|  | sample.insertPose(i3, gtsamPose2(4,0,0)); | ||
|  | sample.insertPoint(j1, gtsamPoint2(2,2)); | ||
|  | sample.insertPoint(j2, gtsamPoint2(4,2)); | ||
|  | 
 | ||
|  | %% Calculate and plot Covariance Ellipses | ||
|  | figure(1);clf;hold on | ||
|  | marginals = graph.marginals(sample); | ||
|  | for i=1:3 | ||
|  |     key = symbol('x',i); | ||
|  |     pose{i} = sample.pose(key); | ||
|  |     P{i}=marginals.marginalCovariance(key); | ||
|  |     if i>1 | ||
|  |         plot([pose{i-1}.x;pose{i}.x],[pose{i-1}.y;pose{i}.y],'r-'); | ||
|  |     end | ||
|  | end | ||
|  | for i=1:3 | ||
|  |     plotPose2(pose{i},'g',P{i}) | ||
|  | end | ||
|  | for j=1:2 | ||
|  |     key = symbol('l',j); | ||
|  |     point{j} = sample.point(key); | ||
|  |     Q{j}=marginals.marginalCovariance(key); | ||
|  |     S{j}=chol(Q{j}); % for sampling | ||
|  |     plotPoint2(point{j},'b',Q{j}) | ||
|  | end | ||
|  | plot([pose{1}.x;point{1}.x],[pose{1}.y;point{1}.y],'c-'); | ||
|  | plot([pose{2}.x;point{1}.x],[pose{2}.y;point{1}.y],'c-'); | ||
|  | plot([pose{3}.x;point{2}.x],[pose{3}.y;point{2}.y],'c-'); | ||
|  | axis equal | ||
|  | 
 | ||
|  | %% Do Sampling on point 2 | ||
|  | N=1000; | ||
|  | for s=1:N | ||
|  |     delta = S{2}*randn(2,1); | ||
|  |     proposedPoint = gtsamPoint2(point{2}.x+delta(1),point{2}.y+delta(2)); | ||
|  |     plotPoint2(proposedPoint,'k.') | ||
|  | end |