4066 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			Plaintext
		
	
	
		
		
			
		
	
	
			4066 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			Plaintext
		
	
	
|  | #LyX 2.0 created this file. For more info see http://www.lyx.org/ | |||
|  | \lyxformat 413 | |||
|  | \begin_document | |||
|  | \begin_header | |||
|  | \textclass article | |||
|  | \use_default_options false | |||
|  | \begin_modules | |||
|  | theorems-std | |||
|  | \end_modules | |||
|  | \maintain_unincluded_children false | |||
|  | \language english | |||
|  | \language_package default | |||
|  | \inputencoding auto | |||
|  | \fontencoding global | |||
|  | \font_roman times | |||
|  | \font_sans default | |||
|  | \font_typewriter default | |||
|  | \font_default_family rmdefault | |||
|  | \use_non_tex_fonts false | |||
|  | \font_sc false | |||
|  | \font_osf false | |||
|  | \font_sf_scale 100 | |||
|  | \font_tt_scale 100 | |||
|  | 
 | |||
|  | \graphics default | |||
|  | \default_output_format default | |||
|  | \output_sync 0 | |||
|  | \bibtex_command default | |||
|  | \index_command default | |||
|  | \paperfontsize 12 | |||
|  | \spacing single | |||
|  | \use_hyperref false | |||
|  | \papersize default | |||
|  | \use_geometry true | |||
|  | \use_amsmath 1 | |||
|  | \use_esint 0 | |||
|  | \use_mhchem 1 | |||
|  | \use_mathdots 1 | |||
|  | \cite_engine basic | |||
|  | \use_bibtopic false | |||
|  | \use_indices false | |||
|  | \paperorientation portrait | |||
|  | \suppress_date false | |||
|  | \use_refstyle 0 | |||
|  | \index Index | |||
|  | \shortcut idx | |||
|  | \color #008000 | |||
|  | \end_index | |||
|  | \leftmargin 1in | |||
|  | \topmargin 1in | |||
|  | \rightmargin 1in | |||
|  | \bottommargin 1in | |||
|  | \secnumdepth 3 | |||
|  | \tocdepth 3 | |||
|  | \paragraph_separation indent | |||
|  | \paragraph_indentation default | |||
|  | \quotes_language english | |||
|  | \papercolumns 1 | |||
|  | \papersides 1 | |||
|  | \paperpagestyle default | |||
|  | \tracking_changes false | |||
|  | \output_changes false | |||
|  | \html_math_output 0 | |||
|  | \html_css_as_file 0 | |||
|  | \html_be_strict false | |||
|  | \end_header | |||
|  | 
 | |||
|  | \begin_body | |||
|  | 
 | |||
|  | \begin_layout Title | |||
|  | Lie Groups for Beginners | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Author | |||
|  | Frank Dellaert | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Note Comment | |||
|  | status open | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | Derivatives | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\deriv}[2]{\frac{\partial#1}{\partial#2}} | |||
|  | {\frac{\partial#1}{\partial#2}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\at}[2]{#1\biggr\rvert_{#2}} | |||
|  | {#1\biggr\rvert_{#2}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  |   | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\Jac}[3]{ \at{\deriv{#1}{#2}} {#3} } | |||
|  | {\at{\deriv{#1}{#2}}{#3}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Note Comment | |||
|  | status open | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | Lie Groups | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\xhat}{\hat{x}} | |||
|  | {\hat{x}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\yhat}{\hat{y}} | |||
|  | {\hat{y}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\Ad}[1]{Ad_{#1}} | |||
|  | {Ad_{#1}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\AAdd}[1]{\mathbf{\mathop{Ad}}{}_{#1}} | |||
|  | {\mathbf{\mathop{Ad}}{}_{#1}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\define}{\stackrel{\Delta}{=}} | |||
|  | {\stackrel{\Delta}{=}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\gg}{\mathfrak{g}} | |||
|  | {\mathfrak{g}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\Rn}{\mathbb{R}^{n}} | |||
|  | {\mathbb{R}^{n}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Note Comment | |||
|  | status open | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | SO(2), 1 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\Rtwo}{\mathfrak{\mathbb{R}^{2}}} | |||
|  | {\mathfrak{\mathbb{R}^{2}}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\SOtwo}{SO(2)} | |||
|  | {SO(2)} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\sotwo}{\mathfrak{so(2)}} | |||
|  | {\mathfrak{so(2)}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\that}{\hat{\theta}} | |||
|  | {\hat{\theta}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\skew}[1]{[#1]_{+}} | |||
|  | {[#1]_{+}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Note Comment | |||
|  | status open | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | SE(2), 3 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\SEtwo}{SE(2)} | |||
|  | {SE(2)} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\setwo}{\mathfrak{se(2)}} | |||
|  | {\mathfrak{se(2)}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\Skew}[1]{[#1]_{\times}} | |||
|  | {[#1]_{\times}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Note Comment | |||
|  | status open | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | SO(3), 3 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\Rthree}{\mathfrak{\mathbb{R}^{3}}} | |||
|  | {\mathfrak{\mathbb{R}^{3}}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\SOthree}{SO(3)} | |||
|  | {SO(3)} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\sothree}{\mathfrak{so(3)}} | |||
|  | {\mathfrak{so(3)}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\what}{\hat{\omega}} | |||
|  | {\hat{\omega}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Note Comment | |||
|  | status open | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | SE(3),6 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\Rsix}{\mathfrak{\mathbb{R}^{6}}} | |||
|  | {\mathfrak{\mathbb{R}^{6}}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\SEthree}{SE(3)} | |||
|  | {SE(3)} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\sethree}{\mathfrak{se(3)}} | |||
|  | {\mathfrak{se(3)}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\xihat}{\hat{\xi}} | |||
|  | {\hat{\xi}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Note Comment | |||
|  | status open | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | Aff(2),6 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\Afftwo}{Aff(2)} | |||
|  | {Aff(2)} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\afftwo}{\mathfrak{aff(2)}} | |||
|  | {\mathfrak{aff(2)}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\aa}{a} | |||
|  | {a} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\ahat}{\hat{a}} | |||
|  | {\hat{a}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Note Comment | |||
|  | status collapsed | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | SL(3),8 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\SLthree}{SL(3)} | |||
|  | {SL(3)} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\slthree}{\mathfrak{sl(3)}} | |||
|  | {\mathfrak{sl(3)}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\hh}{h} | |||
|  | {h} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset FormulaMacro | |||
|  | \newcommand{\hhat}{\hat{h}} | |||
|  | {\hat{h}} | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Section | |||
|  | Motivation: Rigid Motions in the Plane | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | We will start with a small example of a robot moving in a plane, parameterized | |||
|  |  by a  | |||
|  | \emph on | |||
|  | 2D pose | |||
|  | \emph default | |||
|  |   | |||
|  | \begin_inset Formula $(x,\, y,\,\theta)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  When we give it a small forward velocity  | |||
|  | \begin_inset Formula $v_{x}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , we know that the location changes as  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \dot{x}=v_{x} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | The solution to this trivial differential equation is, with  | |||
|  | \begin_inset Formula $x_{0}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  the initial  | |||
|  | \begin_inset Formula $x$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | -position of the robot, | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | x_{t}=x_{0}+v_{x}t | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | A similar story holds for translation in the  | |||
|  | \begin_inset Formula $y$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  direction, and in fact for translations in general: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | (x_{t},\, y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\, y_{0}+v_{y}t,\,\theta_{0}) | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Similarly for rotation we have  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | (x_{t},\, y_{t},\,\theta_{t})=(x_{0},\, y_{0},\,\theta_{0}+\omega t) | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | where  | |||
|  | \begin_inset Formula $\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is angular velocity, measured in  | |||
|  | \begin_inset Formula $rad/s$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  in counterclockwise direction. | |||
|  |   | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Float figure | |||
|  | placement h | |||
|  | wide false | |||
|  | sideways false | |||
|  | status collapsed | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | \align center | |||
|  | \begin_inset Graphics | |||
|  | 	filename images/circular.pdf | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset Caption | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | Robot moving along a circular trajectory. | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | However, if we combine translation and rotation, the story breaks down! | |||
|  |  We cannot write | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | (x_{t},\, y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\, y_{0}+v_{y}t,\,\theta_{0}+\omega t) | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | The reason is that, if we move the robot a tiny bit according to the velocity | |||
|  |  vector  | |||
|  | \begin_inset Formula $(v_{x},\, v_{y},\,\omega)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , we have (to first order) | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | (x_{\delta},\, y_{\delta},\,\theta_{\delta})=(x_{0}+v_{x}\delta,\, y_{0}+v_{y}\delta,\,\theta_{0}+\omega\delta) | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | but now the robot has rotated, and for the next incremental change, the | |||
|  |  velocity vector would have to be rotated before it can be applied. | |||
|  |  In fact, the robot will move on a  | |||
|  | \emph on | |||
|  | circular | |||
|  | \emph default | |||
|  |  trajectory. | |||
|  |   | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The reason is that  | |||
|  | \emph on | |||
|  | translation and rotation do not commute | |||
|  | \emph default | |||
|  | : if we rotate and then move we will end up in a different place than if | |||
|  |  we moved first, then rotated. | |||
|  |  In fact, someone once said (I forget who, kudos for who can track down | |||
|  |  the exact quote): | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Quote | |||
|  | If rotation and translation commuted, we could do all rotations before leaving | |||
|  |  home. | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Float figure | |||
|  | placement h | |||
|  | wide false | |||
|  | sideways false | |||
|  | status open | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | \align center | |||
|  | \begin_inset Graphics | |||
|  | 	filename images/n-steps.pdf | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset Caption | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | \begin_inset CommandInset label | |||
|  | LatexCommand label | |||
|  | name "fig:n-step-program" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Approximating a circular trajectory with  | |||
|  | \begin_inset Formula $n$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  steps. | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | To make progress, we have to be more precise about how the robot behaves. | |||
|  |  Specifically, let us define composition of two poses  | |||
|  | \begin_inset Formula $T_{1}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and  | |||
|  | \begin_inset Formula $T_{2}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  as | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | T_{1}T_{2}=(x_{1},\, y_{1},\,\theta_{1})(x_{2},\, y_{2},\,\theta_{2})=(x_{1}+\cos\theta_{1}x_{2}-\sin\theta y_{2},\, y_{1}+\sin\theta_{1}x_{2}+\cos\theta_{1}y_{2},\,\theta_{1}+\theta_{2}) | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | This is a bit clumsy, so we resort to a trick: embed the 2D poses in the | |||
|  |  space of  | |||
|  | \begin_inset Formula $3\times3$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  matrices, so we can define composition as matrix multiplication: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | T_{1}T_{2}=\left[\begin{array}{cc} | |||
|  | R_{1} & t_{1}\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | R_{2} & t_{2}\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right]=\left[\begin{array}{cc} | |||
|  | R_{1}R_{2} & R_{1}t_{2}+t_{1}\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | where the matrices  | |||
|  | \begin_inset Formula $R$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  are 2D rotation matrices defined as  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | R=\left[\begin{array}{cc} | |||
|  | \cos\theta & -\sin\theta\\ | |||
|  | \sin\theta & \cos\theta | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Now a  | |||
|  | \begin_inset Quotes eld | |||
|  | \end_inset | |||
|  | 
 | |||
|  | tiny | |||
|  | \begin_inset Quotes erd | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  motion of the robot can be written as | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | T(\delta)=\left[\begin{array}{ccc} | |||
|  | \cos\omega\delta & -\sin\omega\delta & v_{x}\delta\\ | |||
|  | \sin\omega\delta & \cos\omega\delta & v_{y}\delta\\ | |||
|  | 0 & 0 & 1 | |||
|  | \end{array}\right]\approx\left[\begin{array}{ccc} | |||
|  | 1 & -\omega\delta & v_{x}\delta\\ | |||
|  | \omega\delta & 1 & v_{y}\delta\\ | |||
|  | 0 & 0 & 1 | |||
|  | \end{array}\right]=I+\delta\left[\begin{array}{ccc} | |||
|  | 0 & -\omega & v_{x}\\ | |||
|  | \omega & 0 & v_{y}\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Let us define the  | |||
|  | \emph on | |||
|  | 2D twist | |||
|  | \emph default | |||
|  |  vector  | |||
|  | \begin_inset Formula $\xi=(v,\omega)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , and the matrix above as | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \xihat\define\left[\begin{array}{ccc} | |||
|  | 0 & -\omega & v_{x}\\ | |||
|  | \omega & 0 & v_{y}\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | If we wanted  | |||
|  | \begin_inset Formula $t$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  to be large, we could split up  | |||
|  | \begin_inset Formula $t$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  into smaller timesteps, say  | |||
|  | \begin_inset Formula $n$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  of them, and compose them as follows: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | T(t)\approx\left(I+\frac{t}{n}\xihat\right)\ldots\mbox{n times}\ldots\left(I+\frac{t}{n}\xihat\right)=\left(I+\frac{t}{n}\xihat\right)^{n} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | The result is shown in Figure  | |||
|  | \begin_inset CommandInset ref | |||
|  | LatexCommand ref | |||
|  | reference "fig:n-step-program" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | Of course, the perfect solution would be obtained if we take  | |||
|  | \begin_inset Formula $n$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  to infinity: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | T(t)=\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | For real numbers, this series is familiar and is actually a way to compute | |||
|  |  the exponential function: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | e^{x}=\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=\sum_{k=0}^{\infty}\frac{x^{k}}{k!} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | The series can be similarly defined for square matrices, and the final result | |||
|  |  is that we can write the motion of a robot along a circular trajectory, | |||
|  |  resulting from the 2D twist  | |||
|  | \begin_inset Formula $\xi=(v,\omega)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset Formula $ $ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  as the  | |||
|  | \emph on | |||
|  | matrix exponential | |||
|  | \emph default | |||
|  |  of  | |||
|  | \begin_inset Formula $\xihat$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | : | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | T(t)=e^{t\xihat}\define\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}=\sum_{k=0}^{\infty}\frac{t^{k}}{k!}\xihat^{k} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | We call this mapping from 2D twists matrices  | |||
|  | \begin_inset Formula $\xihat$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  to 2D rigid transformations the  | |||
|  | \emph on | |||
|  | exponential map. | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The above has all elements of Lie group theory. | |||
|  |  We call the space of 2D rigid transformations, along with the composition | |||
|  |  operation, the  | |||
|  | \emph on | |||
|  | special Euclidean group | |||
|  | \emph default | |||
|  |   | |||
|  | \begin_inset Formula $\SEtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  It is called a Lie group because it is simultaneously a topological group | |||
|  |  and a manifold, which implies that the multiplication and the inversion | |||
|  |  operations are smooth. | |||
|  |  The space of 2D twists, together with a special binary operation to be | |||
|  |  defined below, is called the Lie algebra  | |||
|  | \begin_inset Formula $\setwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  associated with  | |||
|  | \begin_inset Formula $\SEtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |   | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Newpage pagebreak | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Section | |||
|  | Basic Lie Group Concepts | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | We now define the concepts illustrated above, introduce some notation, and | |||
|  |  see what we can say in general. | |||
|  |  After this we then introduce the most commonly used Lie groups and their | |||
|  |  Lie algebras. | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | A Manifold and a Group | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | A  | |||
|  | \series bold | |||
|  | Lie group | |||
|  | \series default | |||
|  |   | |||
|  | \begin_inset Formula $G$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is both a group  | |||
|  | \emph on | |||
|  | and | |||
|  | \emph default | |||
|  |  a manifold that possesses a smooth group operation. | |||
|  |  Associated with it is a  | |||
|  | \series bold | |||
|  | Lie Algebra | |||
|  | \series default | |||
|  |   | |||
|  | \begin_inset Formula $\gg$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  which, loosely speaking, can be identified with the tangent space at the | |||
|  |  identity and completely defines how the groups behaves around the identity. | |||
|  |  There is a mapping from  | |||
|  | \begin_inset Formula $\gg$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  back to  | |||
|  | \begin_inset Formula $G$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , called the  | |||
|  | \series bold | |||
|  | exponential map | |||
|  | \series default | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \exp:\gg\rightarrow G | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | which is typically a many-to-one mapping. | |||
|  |  The corresponding inverse can be define locally around the origin and hence | |||
|  |  is a  | |||
|  | \begin_inset Quotes eld | |||
|  | \end_inset | |||
|  | 
 | |||
|  | logarithm | |||
|  | \begin_inset Quotes erd | |||
|  | \end_inset | |||
|  | 
 | |||
|  |   | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \log:G\rightarrow\gg | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | that maps elements in a neighborhood of  | |||
|  | \begin_inset Formula $id$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  in G to an element in  | |||
|  | \begin_inset Formula $\gg$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | An important family of Lie groups are the matrix Lie groups, whose elements | |||
|  |  are  | |||
|  | \begin_inset Formula $n\times n$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  invertible matrices. | |||
|  |  The set of all such matrices, together with the matrix multiplication, | |||
|  |  is called the general linear group  | |||
|  | \begin_inset Formula $GL(n)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  of dimension  | |||
|  | \begin_inset Formula $n$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , and any closed subgroup of it is a | |||
|  | \series bold | |||
|  |  matrix Lie group | |||
|  | \series default | |||
|  | . | |||
|  |  Most if not all Lie groups we are interested in will be matrix Lie groups. | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | Lie Algebra | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The Lie Algebra  | |||
|  | \begin_inset Formula $\gg$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is called an algebra because it is endowed with a binary operation, the | |||
|  |   | |||
|  | \series bold | |||
|  | Lie bracket | |||
|  | \series default | |||
|  |   | |||
|  | \begin_inset Formula $[X,Y]$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , the properties of which are closely related to the group operation of | |||
|  |   | |||
|  | \begin_inset Formula $G$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  For example, for algebras associated with matrix Lie groups, the Lie bracket | |||
|  |  is given by  | |||
|  | \begin_inset Formula $[A,B]\define AB-BA$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The relationship of the Lie bracket to the group operation is as follows: | |||
|  |  for commutative Lie groups vector addition  | |||
|  | \begin_inset Formula $X+Y$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  in  | |||
|  | \begin_inset Formula $\gg$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  mimicks the group operation. | |||
|  |  For example, if we have  | |||
|  | \begin_inset Formula $Z=X+Y$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  in  | |||
|  | \begin_inset Formula $\gg$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , when mapped backed to  | |||
|  | \begin_inset Formula $G$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  via the exponential map we obtain  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | e^{Z}=e^{X+Y}=e^{X}e^{Y} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | However, this does  | |||
|  | \emph on | |||
|  | not | |||
|  | \emph default | |||
|  |  hold for non-commutative Lie groups: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | Z=\log(e^{X}e^{Y})\neq X+Y | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Instead,  | |||
|  | \begin_inset Formula $Z$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  can be calculated using the Baker-Campbell-Hausdorff (BCH) formula | |||
|  | \begin_inset CommandInset citation | |||
|  | LatexCommand cite | |||
|  | key "Hall00book" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset Note Note | |||
|  | status collapsed | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | http://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | : | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | Z=X+Y+[X,Y]/2+[X-Y,[X,Y]]/12-[Y,[X,[X,Y]]]/24+\ldots | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | For commutative groups the bracket is zero and we recover  | |||
|  | \begin_inset Formula $Z=X+Y$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  For non-commutative groups we can use the BCH formula to approximate it. | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | Exponential Coordinates | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | For  | |||
|  | \begin_inset Formula $n$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | -dimensional matrix Lie groups, as a vector space the Lie algebra  | |||
|  | \begin_inset Formula $\gg$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is isomorphic to  | |||
|  | \begin_inset Formula $\mathbb{R}^{n}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , and we can define the hat operator  | |||
|  | \begin_inset CommandInset citation | |||
|  | LatexCommand cite | |||
|  | after "page 41" | |||
|  | key "Murray94book" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \hat{}:x\in\mathbb{R}^{n}\rightarrow\xhat\in\gg | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | which maps  | |||
|  | \begin_inset Formula $n$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | -vectors  | |||
|  | \begin_inset Formula $x\in\mathbb{R}^{n}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  to elements of  | |||
|  | \begin_inset Formula $\gg$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  In the case of matrix Lie groups, the elements  | |||
|  | \begin_inset Formula $\xhat$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  of  | |||
|  | \begin_inset Formula $\gg$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  are also  | |||
|  | \begin_inset Formula $n\times n$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  matrices, and the map is given by | |||
|  | \begin_inset Formula  | |||
|  | \begin{equation} | |||
|  | \xhat=\sum_{i=1}^{n}x_{i}G^{i}\label{eq:generators} | |||
|  | \end{equation} | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | where the  | |||
|  | \begin_inset Formula $G^{i}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  are  | |||
|  | \begin_inset Formula $n\times n$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  matrices known as Lie group generators. | |||
|  |  The meaning of the map  | |||
|  | \begin_inset Formula $x\rightarrow\xhat$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  will depend on the group  | |||
|  | \begin_inset Formula $G$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and will generally have an intuitive interpretation. | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | Actions | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | An important concept is that of a group element acting on an element of | |||
|  |  a manifold  | |||
|  | \begin_inset Formula $M$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  For example, 2D rotations act on 2D points, 3D rotations act on 3D points, | |||
|  |  etc. | |||
|  |  In particular, a  | |||
|  | \series bold | |||
|  | left action | |||
|  | \series default | |||
|  |  of  | |||
|  | \begin_inset Formula $G$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  on  | |||
|  | \begin_inset Formula $M$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is defined as a smooth map  | |||
|  | \begin_inset Formula $\Phi:G\times M\rightarrow M$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  such that  | |||
|  | \begin_inset CommandInset citation | |||
|  | LatexCommand cite | |||
|  | after "Appendix A" | |||
|  | key "Murray94book" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | : | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Enumerate | |||
|  | The identity element  | |||
|  | \begin_inset Formula $e$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  has no effect, i.e.,  | |||
|  | \begin_inset Formula $\Phi(e,p)=p$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Enumerate | |||
|  | Composing two actions can be combined into one action:  | |||
|  | \begin_inset Formula $\Phi(g,\Phi(h,p))=\Phi(gh,p)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The (usual) action of an  | |||
|  | \begin_inset Formula $n$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | -dimensional matrix group  | |||
|  | \begin_inset Formula $G$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is matrix-vector multiplication on  | |||
|  | \begin_inset Formula $\mathbb{R}^{n}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | ,  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | q=Ap | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | with  | |||
|  | \begin_inset Formula $p,q\in\mathbb{R}^{n}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and  | |||
|  | \begin_inset Formula $A\in G\subseteq GL(n)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |   | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | The Adjoint Map and Adjoint Representation | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | Suppose a point  | |||
|  | \begin_inset Formula $p$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is specified as  | |||
|  | \begin_inset Formula $p'$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  in the frame  | |||
|  | \begin_inset Formula $T$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , i.e.,  | |||
|  | \begin_inset Formula $p'=Tp$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , where  | |||
|  | \begin_inset Formula $T$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  transforms from the global coordinates  | |||
|  | \begin_inset Formula $p$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  to the local frame  | |||
|  | \begin_inset Formula $p'$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  To apply an action  | |||
|  | \begin_inset Formula $A$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  we first need to undo  | |||
|  | \begin_inset Formula $T$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , then apply  | |||
|  | \begin_inset Formula $A$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , and then transform the result back to  | |||
|  | \begin_inset Formula $T$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | :  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | q'=TAT^{-1}p' | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | The matrix  | |||
|  | \begin_inset Formula $TAT^{-1}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is said to be conjugate to  | |||
|  | \begin_inset Formula $A$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , and this is a central element of group theory. | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | In general, the  | |||
|  | \series bold | |||
|  | adjoint map | |||
|  | \series default | |||
|  |   | |||
|  | \begin_inset Formula $\AAdd g$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  maps a group element  | |||
|  | \begin_inset Formula $a\in G$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  to its  | |||
|  | \series bold | |||
|  | conjugate | |||
|  | \series default | |||
|  |   | |||
|  | \begin_inset Formula $gag^{-1}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  by  | |||
|  | \begin_inset Formula $g$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  This map captures conjugacy in the group  | |||
|  | \begin_inset Formula $G$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , but there is an equivalent notion in the Lie algebra  | |||
|  | \begin_inset Formula $\mathfrak{\gg}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | ,  | |||
|  | \begin_inset Note Note | |||
|  | status open | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | http://en.wikipedia.org/wiki/Exponential_map | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \AAdd ge^{\xhat}=g\exp\left(\xhat\right)g^{-1}=\exp(\Ad g{\xhat}) | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | where  | |||
|  | \begin_inset Formula $\Ad g:\gg\rightarrow\mathfrak{\gg}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a map parameterized by a group element  | |||
|  | \begin_inset Formula $g$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , and is called the  | |||
|  | \emph on | |||
|  | adjoint representation | |||
|  | \emph default | |||
|  | . | |||
|  |  The intuitive explanation is that a change  | |||
|  | \begin_inset Formula $\exp\left(\xhat\right)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  defined around the origin, but applied at the group element  | |||
|  | \begin_inset Formula $g$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , can be written in one step by taking the adjoint  | |||
|  | \begin_inset Formula $\Ad g{\xhat}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  of  | |||
|  | \begin_inset Formula $\xhat$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |   | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | In the special case of matrix Lie groups the adjoint can be written as  | |||
|  | \begin_inset Note Note | |||
|  | status collapsed | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | http://en.wikipedia.org/wiki/Adjoint_representation_of_a_Lie_group | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \Ad T{\xhat}\define T\xhat T^{-1} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | and hence we have | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Formula  | |||
|  | \begin{equation} | |||
|  | Te^{\xhat}T^{-1}=e^{T\xhat T^{-1}}\label{eq:matrixAdjoint} | |||
|  | \end{equation} | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | where both  | |||
|  | \begin_inset Formula $T\in G$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and  | |||
|  | \begin_inset Formula $\xhat\in\gg$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  are  | |||
|  | \begin_inset Formula $n\times n$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  matrices for an  | |||
|  | \begin_inset Formula $n$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | -dimensional Lie group. | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Newpage pagebreak | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Section | |||
|  | 2D Rotations | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | We first look at a very simple group, the 2D rotations. | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | Basics | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The Lie group  | |||
|  | \begin_inset Formula $\SOtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a subgroup of the general linear group  | |||
|  | \begin_inset Formula $GL(2)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  of  | |||
|  | \begin_inset Formula $2\times2$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  invertible matrices. | |||
|  |  Its Lie algebra  | |||
|  | \begin_inset Formula $\sotwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is the vector space of  | |||
|  | \begin_inset Formula $2\times2$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  skew-symmetric matrices. | |||
|  |  Since  | |||
|  | \begin_inset Formula $\SOtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a one-dimensional manifold,  | |||
|  | \begin_inset Formula $\sotwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is isomorphic to  | |||
|  | \begin_inset Formula $\mathbb{R}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and we define | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \hat{}:\mathbb{R}\rightarrow\sotwo | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \hat{}:\omega\rightarrow\what=\skew{\omega} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | which maps the angle  | |||
|  | \begin_inset Formula $\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  to the  | |||
|  | \begin_inset Formula $2\times2$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  skew-symmetric matrix  | |||
|  | \family roman | |||
|  | \series medium | |||
|  | \shape up | |||
|  | \size normal | |||
|  | \emph off | |||
|  | \bar no | |||
|  | \noun off | |||
|  | \color none | |||
|  | 
 | |||
|  | \begin_inset Formula $\skew{\omega}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | : | |||
|  | \family default | |||
|  | \series default | |||
|  | \shape default | |||
|  | \size default | |||
|  | \emph default | |||
|  | \bar default | |||
|  | \noun default | |||
|  | \color inherit | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \skew{\omega}=\left[\begin{array}{cc} | |||
|  | 0 & -\omega\\ | |||
|  | \omega & 0 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | The exponential map can be computed in closed form as  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | e^{\skew{\omega}}=\left[\begin{array}{cc} | |||
|  | \cos\omega & -\sin\omega\\ | |||
|  | \sin\omega & \cos\omega | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | \begin_inset CommandInset label | |||
|  | LatexCommand label | |||
|  | name "sub:Diagonalized2D" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Diagonalized Form | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The matrix  | |||
|  | \begin_inset Formula $\skew 1$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  can be diagonalized (see  | |||
|  | \begin_inset CommandInset citation | |||
|  | LatexCommand cite | |||
|  | key "Hall00book" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | ) with eigenvalues  | |||
|  | \begin_inset Formula $-i$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and  | |||
|  | \begin_inset Formula $i$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  , and eigenvectors  | |||
|  | \begin_inset Formula $\left[\begin{array}{c} | |||
|  | 1\\ | |||
|  | i | |||
|  | \end{array}\right]$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and  | |||
|  | \begin_inset Formula $\left[\begin{array}{c} | |||
|  | i\\ | |||
|  | 1 | |||
|  | \end{array}\right]$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  . | |||
|  |  Readers familiar with projective geometry will recognize these as the circular | |||
|  |  points when promoted to homogeneous coordinates. | |||
|  |  In particular: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \skew{\omega}=\left[\begin{array}{cc} | |||
|  | 0 & -\omega\\ | |||
|  | \omega & 0 | |||
|  | \end{array}\right]=\left[\begin{array}{cc} | |||
|  | 1 & i\\ | |||
|  | i & 1 | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | -i\omega & 0\\ | |||
|  | 0 & i\omega | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | 1 & i\\ | |||
|  | i & 1 | |||
|  | \end{array}\right]^{-1} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | and hence | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | e^{\skew{\omega}}=\frac{1}{2}\left[\begin{array}{cc} | |||
|  | 1 & i\\ | |||
|  | i & 1 | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | e^{-i\omega} & 0\\ | |||
|  | 0 & e^{i\omega} | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | 1 & -i\\ | |||
|  | -i & 1 | |||
|  | \end{array}\right]=\left[\begin{array}{cc} | |||
|  | \cos\omega & -\sin\omega\\ | |||
|  | \sin\omega & \cos\omega | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | where the latter can be shown using  | |||
|  | \begin_inset Formula $e^{i\omega}=\cos\omega+i\sin\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | Adjoint | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The adjoint for  | |||
|  | \begin_inset Formula $\sotwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is trivially equal to the identity, as is the case for  | |||
|  | \emph on | |||
|  | all | |||
|  | \emph default | |||
|  |  commutative groups: | |||
|  | \begin_inset Formula  | |||
|  | \begin{eqnarray*} | |||
|  | \Ad R\what & = & \left[\begin{array}{cc} | |||
|  | \cos\theta & -\sin\theta\\ | |||
|  | \sin\theta & \cos\theta | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | 0 & -\omega\\ | |||
|  | \omega & 0 | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | \cos\theta & -\sin\theta\\ | |||
|  | \sin\theta & \cos\theta | |||
|  | \end{array}\right]^{T}\\ | |||
|  |  & = & \omega\left[\begin{array}{cc} | |||
|  | -\sin\theta & -\cos\theta\\ | |||
|  | \cos\theta & -\sin\theta | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | \cos\theta & \sin\theta\\ | |||
|  | -\sin\theta & \cos\theta | |||
|  | \end{array}\right]=\left[\begin{array}{cc} | |||
|  | 0 & -\omega\\ | |||
|  | \omega & 0 | |||
|  | \end{array}\right] | |||
|  | \end{eqnarray*} | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | i.e.,  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \Ad R\what=\what | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | Actions | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | In the case of  | |||
|  | \begin_inset Formula $\SOtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  the vector space is  | |||
|  | \begin_inset Formula $\Rtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , and the group action corresponds to rotating a point | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | q=Rp | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | We would now like to know what an incremental rotation parameterized by | |||
|  |   | |||
|  | \begin_inset Formula $\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  would do: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | q(\text{\omega})=Re^{\skew{\omega}}p | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | For small angles  | |||
|  | \begin_inset Formula $\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  we have  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | e^{\skew{\omega}}\approx\skew{\omega}=\omega\skew 1 | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | where  | |||
|  | \begin_inset Formula $\skew 1$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  acts like a restricted  | |||
|  | \begin_inset Quotes eld | |||
|  | \end_inset | |||
|  | 
 | |||
|  | cross product | |||
|  | \begin_inset Quotes erd | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  in the plane on points:  | |||
|  | \begin_inset Formula  | |||
|  | \begin{equation} | |||
|  | \skew 1\left[\begin{array}{c} | |||
|  | x\\ | |||
|  | y | |||
|  | \end{array}\right]=R_{\pi/2}\left[\begin{array}{c} | |||
|  | x\\ | |||
|  | y | |||
|  | \end{array}\right]=\left[\begin{array}{c} | |||
|  | -y\\ | |||
|  | x | |||
|  | \end{array}\right]\label{eq:RestrictedCross} | |||
|  | \end{equation} | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Hence the derivative of the action is given as  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\skew{\omega}}p\right)=R\deriv{}{\omega}\left(\omega\skew 1p\right)=RH_{p} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | where  | |||
|  | \begin_inset Formula $H_{p}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a  | |||
|  | \begin_inset Formula $2\times1$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  matrix that depends on  | |||
|  | \begin_inset Formula $p$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | : | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | H_{p}\define\skew 1p=\left[\begin{array}{c} | |||
|  | -p_{y}\\ | |||
|  | p_{x} | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Newpage pagebreak | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Section | |||
|  | 2D Rigid Transformations | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | Basics | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The Lie group  | |||
|  | \begin_inset Formula $\SEtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a subgroup of the general linear group  | |||
|  | \begin_inset Formula $GL(3)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  of  | |||
|  | \begin_inset Formula $3\times3$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  invertible matrices of the form | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | T\define\left[\begin{array}{cc} | |||
|  | R & t\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | where  | |||
|  | \begin_inset Formula $R\in\SOtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a rotation matrix and  | |||
|  | \begin_inset Formula $t\in\Rtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a translation vector. | |||
|  |   | |||
|  | \begin_inset Formula $\SEtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is the  | |||
|  | \emph on | |||
|  | semi-direct product | |||
|  | \emph default | |||
|  |  of  | |||
|  | \begin_inset Formula $\Rtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  by  | |||
|  | \begin_inset Formula $SO(2)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , written as  | |||
|  | \begin_inset Formula $\SEtwo=\Rtwo\rtimes\SOtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  In particular, any element  | |||
|  | \begin_inset Formula $T$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  of  | |||
|  | \begin_inset Formula $\SEtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  can be written as | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | T=\left[\begin{array}{cc} | |||
|  | 0 & t\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | R & 0\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | and they compose as | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | T_{1}T_{2}=\left[\begin{array}{cc} | |||
|  | R_{1} & t_{1}\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | R_{2} & t_{2}\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right]=\left[\begin{array}{cc} | |||
|  | R_{1}R_{2} & R_{1}t_{2}+t_{1}\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Hence, an alternative way of writing down elements of  | |||
|  | \begin_inset Formula $\SEtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is as the ordered pair  | |||
|  | \begin_inset Formula $(R,\, t)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , with composition defined a | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | (R_{1},\, t_{1})(R_{2},\, t_{2})=(R_{1}R_{2},\, R{}_{1}t_{2}+t_{1}) | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The corresponding Lie algebra  | |||
|  | \begin_inset Formula $\setwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is the vector space of  | |||
|  | \begin_inset Formula $3\times3$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  twists  | |||
|  | \begin_inset Formula $\xihat$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  parameterized by the  | |||
|  | \emph on | |||
|  | twist coordinates | |||
|  | \emph default | |||
|  |   | |||
|  | \begin_inset Formula $\xi\in\Rthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , with the mapping  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \xi\define\left[\begin{array}{c} | |||
|  | v\\ | |||
|  | \omega | |||
|  | \end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc} | |||
|  | \skew{\omega} & v\\ | |||
|  | 0 & 0 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Note we think of robots as having a pose  | |||
|  | \begin_inset Formula $(x,y,\theta)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and hence I reserved the first two components for translation and the last | |||
|  |  for rotation. | |||
|  |   | |||
|  | \family roman | |||
|  | \series medium | |||
|  | \shape up | |||
|  | \size normal | |||
|  | \emph off | |||
|  | \bar no | |||
|  | \noun off | |||
|  | \color none | |||
|  | The corresponding Lie group generators are | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | G^{x}=\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 1\\ | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right]\mbox{ }G^{y}=\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 0 & 1\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right]\mbox{ }G^{\theta}=\left[\begin{array}{ccc} | |||
|  | 0 & -1 & 0\\ | |||
|  | 1 & 0 & 0\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \family default | |||
|  | \series default | |||
|  | \shape default | |||
|  | \size default | |||
|  | \emph default | |||
|  | \bar default | |||
|  | \noun default | |||
|  | \color inherit | |||
|  | Applying the exponential map to a twist  | |||
|  | \begin_inset Formula $\xi$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  yields a screw motion yielding an element in  | |||
|  | \begin_inset Formula $\SEtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | :  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | T=e^{\xihat}=\left(e^{\skew{\omega}},(I-e^{\skew{\omega}})\frac{v^{\perp}}{\omega}\right) | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | The Adjoint Map | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The adjoint is  | |||
|  | \begin_inset Formula  | |||
|  | \begin{eqnarray} | |||
|  | \Ad T{\xihat} & = & T\xihat T^{-1}\nonumber \\ | |||
|  |  & = & \left[\begin{array}{cc} | |||
|  | R & t\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | \skew{\omega} & v\\ | |||
|  | 0 & 0 | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | R^{T} & -R^{T}t\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right]\nonumber \\ | |||
|  |  & = & \left[\begin{array}{cc} | |||
|  | \skew{\omega} & -\skew{\omega}t+Rv\\ | |||
|  | 0 & 0 | |||
|  | \end{array}\right]\nonumber \\ | |||
|  |  & = & \left[\begin{array}{cc} | |||
|  | \skew{\omega} & Rv-\omega R_{\pi/2}t\\ | |||
|  | 0 & 0 | |||
|  | \end{array}\right]\label{eq:adjointSE2} | |||
|  | \end{eqnarray} | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | From this we can express the Adjoint map in terms of plane twist coordinates: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \left[\begin{array}{c} | |||
|  | v'\\ | |||
|  | \omega' | |||
|  | \end{array}\right]=\left[\begin{array}{cc} | |||
|  | R & -R_{\pi/2}t\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right]\left[\begin{array}{c} | |||
|  | v\\ | |||
|  | \omega | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | Actions | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The action of  | |||
|  | \begin_inset Formula $\SEtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  on 2D points is done by embedding the points in  | |||
|  | \begin_inset Formula $\mathbb{R}^{3}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  by using homogeneous coordinates | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \hat{q}=\left[\begin{array}{c} | |||
|  | q\\ | |||
|  | 1 | |||
|  | \end{array}\right]=\left[\begin{array}{cc} | |||
|  | R & t\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right]\left[\begin{array}{c} | |||
|  | p\\ | |||
|  | 1 | |||
|  | \end{array}\right]=T\hat{p} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Analoguous to  | |||
|  | \begin_inset Formula $\SEthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , we can compute a velocity  | |||
|  | \begin_inset Formula $\xihat\hat{p}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  in the local  | |||
|  | \begin_inset Formula $T$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  frame:  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \xihat\hat{p}=\left[\begin{array}{cc} | |||
|  | \skew{\omega} & v\\ | |||
|  | 0 & 0 | |||
|  | \end{array}\right]\left[\begin{array}{c} | |||
|  | p\\ | |||
|  | 1 | |||
|  | \end{array}\right]=\left[\begin{array}{c} | |||
|  | \skew{\omega}p+v\\ | |||
|  | 0 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | By only taking the top two rows, we can write this as a velocity in  | |||
|  | \begin_inset Formula $\Rtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , as the product of a  | |||
|  | \begin_inset Formula $2\times3$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  matrix  | |||
|  | \begin_inset Formula $H_{p}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  that acts upon the exponential coordinates  | |||
|  | \begin_inset Formula $\xi$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  directly: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \skew{\omega}p+v=v+R_{\pi/2}p\omega=\left[\begin{array}{cc} | |||
|  | I_{2} & R_{\pi/2}p\end{array}\right]\left[\begin{array}{c} | |||
|  | v\\ | |||
|  | \omega | |||
|  | \end{array}\right]=H_{p}\xi | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Newpage pagebreak | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Section | |||
|  | 3D Rotations | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | Basics | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The Lie group  | |||
|  | \begin_inset Formula $\SOthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a subgroup of the general linear group  | |||
|  | \begin_inset Formula $GL(3)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  of  | |||
|  | \begin_inset Formula $3\times3$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  invertible matrices. | |||
|  |  Its Lie algebra  | |||
|  | \begin_inset Formula $\sothree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is the vector space of  | |||
|  | \begin_inset Formula $3\times3$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  skew-symmetric matrices  | |||
|  | \begin_inset Formula $\what$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  Since  | |||
|  | \begin_inset Formula $\SOthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a three-dimensional manifold,  | |||
|  | \begin_inset Formula $\sothree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is isomorphic to  | |||
|  | \begin_inset Formula $\Rthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and we define the map | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \hat{}:\Rthree\rightarrow\sothree | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \hat{}:\omega\rightarrow\what=\Skew{\omega} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | which maps 3-vectors  | |||
|  | \begin_inset Formula $\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  to skew-symmetric matrices  | |||
|  | \begin_inset Formula $\Skew{\omega}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  : | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \Skew{\omega}=\left[\begin{array}{ccc} | |||
|  | 0 & -\omega_{z} & \omega_{y}\\ | |||
|  | \omega_{z} & 0 & -\omega_{x}\\ | |||
|  | -\omega_{y} & \omega_{x} & 0 | |||
|  | \end{array}\right]=\omega_{x}G^{x}+\omega_{y}G^{y}+\omega_{z}G^{z} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Here the matrices  | |||
|  | \begin_inset Formula $G^{i}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  are the generators for  | |||
|  | \begin_inset Formula $\SOthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | G^{x}=\left(\begin{array}{ccc} | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 0 & -1\\ | |||
|  | 0 & 1 & 0 | |||
|  | \end{array}\right)\mbox{}G^{y}=\left(\begin{array}{ccc} | |||
|  | 0 & 0 & 1\\ | |||
|  | 0 & 0 & 0\\ | |||
|  | -1 & 0 & 0 | |||
|  | \end{array}\right)\mbox{ }G^{z}=\left(\begin{array}{ccc} | |||
|  | 0 & -1 & 0\\ | |||
|  | 1 & 0 & 0\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right) | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | corresponding to a rotation around  | |||
|  | \begin_inset Formula $X$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | ,  | |||
|  | \begin_inset Formula $Y$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , and  | |||
|  | \begin_inset Formula $Z$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , respectively. | |||
|  |  The Lie bracket  | |||
|  | \begin_inset Formula $[x,y]$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  in  | |||
|  | \begin_inset Formula $\sothree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  corresponds to the cross product  | |||
|  | \begin_inset Formula $x\times y$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  in  | |||
|  | \begin_inset Formula $\Rthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | Hence, for every  | |||
|  | \begin_inset Formula $3$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | -vector  | |||
|  | \begin_inset Formula $\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  there is a corresponding rotation matrix | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | R=e^{\Skew{\omega}} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | which defines a canonical parameterization of  | |||
|  | \begin_inset Formula $\SOthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , with  | |||
|  | \begin_inset Formula $\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  known as the canonical or exponential coordinates. | |||
|  |  It is equivalent to the axis-angle representation for rotations, where | |||
|  |  the unit vector  | |||
|  | \begin_inset Formula $\omega/\theta$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  defines the rotation axis, and its magnitude the amount of rotation  | |||
|  | \begin_inset Formula $\theta$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |   | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The exponential map can be computed in closed form using  | |||
|  | \series bold | |||
|  | Rodrigues' formula | |||
|  | \series default | |||
|  |   | |||
|  | \begin_inset CommandInset citation | |||
|  | LatexCommand cite | |||
|  | after "page 28" | |||
|  | key "Murray94book" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | : | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Formula  | |||
|  | \begin{equation} | |||
|  | e^{\what}=I+\frac{\sin\theta}{\theta}\what+\frac{1\text{−}\cos\theta}{\theta^{2}}\what^{2}\label{eq:Rodrigues} | |||
|  | \end{equation} | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | where  | |||
|  | \begin_inset Formula $\what^{2}=\omega\omega^{T}-I$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , with  | |||
|  | \begin_inset Formula $\omega\omega^{T}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  the outer product of  | |||
|  | \begin_inset Formula $\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  Hence, a slightly more efficient variant is | |||
|  | \begin_inset Formula  | |||
|  | \begin{equation} | |||
|  | e^{\what}=\left(\cos\theta\right)I+\frac{\sin\theta}{\theta}\what+\frac{1\text{−}cos\theta}{\theta^{2}}\omega\omega^{T}\label{eq:Rodrigues2} | |||
|  | \end{equation} | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | Diagonalized Form | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | Because a 3D rotation  | |||
|  | \begin_inset Formula $R$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  leaves the axis  | |||
|  | \begin_inset Formula $\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  unchanged,  | |||
|  | \begin_inset Formula $R$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  can be diagonalized as | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | R=C\left(\begin{array}{ccc} | |||
|  | e^{-i\theta} & 0 & 0\\ | |||
|  | 0 & e^{i\theta} & 0\\ | |||
|  | 0 & 0 & 1 | |||
|  | \end{array}\right)C^{-1} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | with  | |||
|  | \begin_inset Formula $C=\left(\begin{array}{ccc} | |||
|  | c_{1} & c_{2} & \omega/\theta\end{array}\right)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , where  | |||
|  | \begin_inset Formula $c_{1}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and  | |||
|  | \begin_inset Formula $c_{2}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  are the complex eigenvectors corresponding to the 2D rotation around  | |||
|  | \begin_inset Formula $\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  This also means that, by  | |||
|  | \begin_inset CommandInset ref | |||
|  | LatexCommand eqref | |||
|  | reference "eq:matrixAdjoint" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \hat{\omega}=C\left(\begin{array}{ccc} | |||
|  | -i\theta & 0 & 0\\ | |||
|  | 0 & i\theta & 0\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right)C^{-1} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | In this case,  | |||
|  | \begin_inset Formula $C$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  has complex columns, but we also have | |||
|  | \begin_inset Formula  | |||
|  | \begin{equation} | |||
|  | \hat{\omega}=B\left(\begin{array}{ccc} | |||
|  | 0 & -\theta & 0\\ | |||
|  | \theta & 0 & 0\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right)B^{T}\label{eq:OmegaDecomposed} | |||
|  | \end{equation} | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | with  | |||
|  | \begin_inset Formula $B=\left(\begin{array}{ccc} | |||
|  | b_{1} & b_{2} & \omega/\theta\end{array}\right)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , where  | |||
|  | \begin_inset Formula $b_{1}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and  | |||
|  | \begin_inset Formula $b_{2}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  form a basis for the 2D plane through the origin and perpendicular to  | |||
|  | \begin_inset Formula $\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  Clearly, from Section  | |||
|  | \begin_inset CommandInset ref | |||
|  | LatexCommand ref | |||
|  | reference "sub:Diagonalized2D" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , we have  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | c_{1}=B\left(\begin{array}{c} | |||
|  | 1\\ | |||
|  | i\\ | |||
|  | 0 | |||
|  | \end{array}\right)\mbox{\,\,\,\ and\,\,\,\,\,}c_{2}=B\left(\begin{array}{c} | |||
|  | i\\ | |||
|  | 1\\ | |||
|  | 0 | |||
|  | \end{array}\right) | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | and when we exponentiate  | |||
|  | \begin_inset CommandInset ref | |||
|  | LatexCommand eqref | |||
|  | reference "eq:OmegaDecomposed" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  we expose the 2D rotation around the axis  | |||
|  | \begin_inset Formula $\omega/\theta$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  with magnitude  | |||
|  | \begin_inset Formula $\theta$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | :  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | R=B\left(\begin{array}{ccc} | |||
|  | \cos\theta & -\sin\theta & 0\\ | |||
|  | \sin\theta & \cos\theta & 0\\ | |||
|  | 0 & 0 & 1 | |||
|  | \end{array}\right)B^{T} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | The latter form for  | |||
|  | \begin_inset Formula $R$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  can be used to prove Rodrigues' formula. | |||
|  |  Expanding the above, we get | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | R=\left(\cos\theta\right)\left(b_{1}b_{1}^{T}+b_{2}b_{2}^{T}\right)+\left(\sin\theta\right)\left(b_{2}b_{1}^{T}-b_{1}b_{2}^{T}\right)+\omega\omega^{T}/\theta^{2} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \family roman | |||
|  | \series medium | |||
|  | \shape up | |||
|  | \size normal | |||
|  | \emph off | |||
|  | \bar no | |||
|  | \strikeout off | |||
|  | \uuline off | |||
|  | \uwave off | |||
|  | \noun off | |||
|  | \color none | |||
|  | 
 | |||
|  | \begin_inset Note Note | |||
|  | status collapsed | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | 
 | |||
|  | \family roman | |||
|  | \series medium | |||
|  | \shape up | |||
|  | \size normal | |||
|  | \emph off | |||
|  | \bar no | |||
|  | \strikeout off | |||
|  | \uuline off | |||
|  | \uwave off | |||
|  | \noun off | |||
|  | \color none | |||
|  | \begin_inset Formula  | |||
|  | \begin{eqnarray*} | |||
|  | R & = & \left(\begin{array}{ccc} | |||
|  | b_{1} & b_{2} & \omega/\theta\end{array}\right)\left(\begin{array}{ccc} | |||
|  | \cos\theta & -\sin\theta & 0\\ | |||
|  | \sin\theta & \cos\theta & 0\\ | |||
|  | 0 & 0 & 1 | |||
|  | \end{array}\right)\left(\begin{array}{c} | |||
|  | b_{1}^{T}\\ | |||
|  | b_{2}^{T}\\ | |||
|  | \omega^{T}/\theta | |||
|  | \end{array}\right)\\ | |||
|  |  & = & \left(\begin{array}{ccc} | |||
|  | b_{1} & b_{2} & \omega/\theta\end{array}\right)\left(\begin{array}{c} | |||
|  | b_{1}^{T}\cos\theta-b_{2}^{T}\sin\theta\\ | |||
|  | b_{1}^{T}\sin\theta+b_{2}^{T}\cos\theta\\ | |||
|  | \omega^{T}/\theta | |||
|  | \end{array}\right)\\ | |||
|  |  & = & b_{1}b_{1}^{T}\cos\theta-b_{1}b_{2}^{T}\sin\theta+b_{2}b_{1}^{T}\sin\theta+b_{2}b_{2}^{T}\cos\theta+\omega\omega^{T}/\theta^{2} | |||
|  | \end{eqnarray*} | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Because  | |||
|  | \begin_inset Formula $B$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a rotation matrix, we have  | |||
|  | \begin_inset Formula $BB^{T}=b_{1}b_{1}^{T}+b_{2}b_{2}^{T}+\omega\omega^{T}/\theta^{2}=I$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , and using  | |||
|  | \begin_inset CommandInset ref | |||
|  | LatexCommand eqref | |||
|  | reference "eq:OmegaDecomposed" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  it is easy to show that  | |||
|  | \begin_inset Formula $b_{2}b_{1}^{T}-b_{1}b_{2}^{T}=\hat{\omega}/\theta$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , hence | |||
|  | \family default | |||
|  | \series default | |||
|  | \shape default | |||
|  | \size default | |||
|  | \emph default | |||
|  | \bar default | |||
|  | \strikeout default | |||
|  | \uuline default | |||
|  | \uwave default | |||
|  | \noun default | |||
|  | \color inherit | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | R=\left(\cos\theta\right)(I-\omega\omega^{T}/\theta^{2})+\left(\sin\theta\right)\left(\hat{\omega}/\theta\right)+\omega\omega^{T}/\theta^{2} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | which is equivalent to  | |||
|  | \begin_inset CommandInset ref | |||
|  | LatexCommand eqref | |||
|  | reference "eq:Rodrigues2" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | The Adjoint Map | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | For rotation matrices  | |||
|  | \begin_inset Formula $R$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  we can prove the following identity (see  | |||
|  | \begin_inset CommandInset ref | |||
|  | LatexCommand vref | |||
|  | reference "proof1" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | ):  | |||
|  | \begin_inset Formula  | |||
|  | \begin{equation} | |||
|  | R\Skew{\omega}R^{T}=\Skew{R\omega}\label{eq:property1} | |||
|  | \end{equation} | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Hence, given property  | |||
|  | \begin_inset CommandInset ref | |||
|  | LatexCommand eqref | |||
|  | reference "eq:property1" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , the adjoint map for  | |||
|  | \begin_inset Formula $\sothree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  simplifies to | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \Ad R{\Skew{\omega}}=R\Skew{\omega}R^{T}=\Skew{R\omega} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | and this can be expressed in exponential coordinates simply by rotating | |||
|  |  the axis  | |||
|  | \begin_inset Formula $\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  to  | |||
|  | \begin_inset Formula $R\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |   | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | As an example, to apply an axis-angle rotation  | |||
|  | \begin_inset Formula $\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  to a point  | |||
|  | \begin_inset Formula $p$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  in the frame  | |||
|  | \begin_inset Formula $R$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , we could: | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Enumerate | |||
|  | First transform  | |||
|  | \begin_inset Formula $p$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  back to the world frame, apply  | |||
|  | \begin_inset Formula $\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , and then rotate back: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | q=Re^{\Skew{\omega}}R^{T} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Enumerate | |||
|  | Immediately apply the transformed axis-angle transformation  | |||
|  | \begin_inset Formula $\Ad R{\Skew{\omega}}=\Skew{R\omega}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | : | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | q=e^{\Skew{R\omega}}p | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | Actions | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | In the case of  | |||
|  | \begin_inset Formula $\SOthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  the vector space is   | |||
|  | \begin_inset Formula $\Rthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , and the group action corresponds to rotating a point | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | q=Rp | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | We would now like to know what an incremental rotation parameterized by | |||
|  |   | |||
|  | \begin_inset Formula $\omega$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  would do: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | q(\omega)=Re^{\Skew{\omega}}p | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | hence the derivative is: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\Skew{\omega}}p\right)=R\deriv{}{\omega}\left(\Skew{\omega}p\right)=R\Skew{-p} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | To show the last equality note that  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \Skew{\omega}p=\omega\times p=-p\times\omega=\Skew{-p}\omega | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Newpage pagebreak | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Section | |||
|  | 3D Rigid Transformations | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The Lie group  | |||
|  | \begin_inset Formula $\SEthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a subgroup of the general linear group  | |||
|  | \begin_inset Formula $GL(4)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  of  | |||
|  | \begin_inset Formula $4\times4$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  invertible matrices of the form | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | T\define\left[\begin{array}{cc} | |||
|  | R & t\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | where  | |||
|  | \begin_inset Formula $R\in\SOthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a rotation matrix and  | |||
|  | \begin_inset Formula $t\in\Rthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a translation vector. | |||
|  |  An alternative way of writing down elements of  | |||
|  | \begin_inset Formula $\SEthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is as the ordered pair  | |||
|  | \begin_inset Formula $(R,\, t)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , with composition defined as | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | (R_{1},\, t_{1})(R_{2},\, t_{2})=(R_{1}R_{2},\, R{}_{1}t_{2}+t_{1}) | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  Its Lie algebra  | |||
|  | \begin_inset Formula $\sethree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is the vector space of  | |||
|  | \begin_inset Formula $4\times4$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  twists  | |||
|  | \begin_inset Formula $\xihat$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  parameterized by the  | |||
|  | \emph on | |||
|  | twist coordinates | |||
|  | \emph default | |||
|  |   | |||
|  | \begin_inset Formula $\xi\in\Rsix$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , with the mapping  | |||
|  | \begin_inset CommandInset citation | |||
|  | LatexCommand cite | |||
|  | key "Murray94book" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  |   | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \xi\define\left[\begin{array}{c} | |||
|  | \omega\\ | |||
|  | v | |||
|  | \end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc} | |||
|  | \Skew{\omega} & v\\ | |||
|  | 0 & 0 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Note we follow Frank Park's convention and reserve the first three components | |||
|  |  for rotation, and the last three for translation. | |||
|  |  Hence, with this parameterization, the generators for  | |||
|  | \begin_inset Formula $\SEthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  are | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | G^{1}=\left(\begin{array}{cccc} | |||
|  | 0 & 0 & 0 & 0\\ | |||
|  | 0 & 0 & -1 & 0\\ | |||
|  | 0 & 1 & 0 & 0\\ | |||
|  | 0 & 0 & 0 & 0 | |||
|  | \end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc} | |||
|  | 0 & 0 & 1 & 0\\ | |||
|  | 0 & 0 & 0 & 0\\ | |||
|  | -1 & 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0 & 0 | |||
|  | \end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc} | |||
|  | 0 & -1 & 0 & 0\\ | |||
|  | 1 & 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0 & 0 | |||
|  | \end{array}\right) | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | G^{4}=\left(\begin{array}{cccc} | |||
|  | 0 & 0 & 0 & 1\\ | |||
|  | 0 & 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0 & 0 | |||
|  | \end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc} | |||
|  | 0 & 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0 & 1\\ | |||
|  | 0 & 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0 & 0 | |||
|  | \end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc} | |||
|  | 0 & 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0 & 1\\ | |||
|  | 0 & 0 & 0 & 0 | |||
|  | \end{array}\right) | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Applying the exponential map to a twist  | |||
|  | \begin_inset Formula $\xi$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  yields a screw motion yielding an element in  | |||
|  | \begin_inset Formula $\SEthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | :  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | T=\exp\xihat | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | A closed form solution for the exponential map is given in  | |||
|  | \begin_inset CommandInset citation | |||
|  | LatexCommand cite | |||
|  | after "page 42" | |||
|  | key "Murray94book" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | 
 | |||
|  | \family roman | |||
|  | \series medium | |||
|  | \shape up | |||
|  | \size normal | |||
|  | \emph off | |||
|  | \bar no | |||
|  | \noun off | |||
|  | \color none | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \exp\left(\left[\begin{array}{c} | |||
|  | \omega\\ | |||
|  | v | |||
|  | \end{array}\right]t\right)=\left[\begin{array}{cc} | |||
|  | e^{\Skew{\omega}t} & (I-e^{\Skew{\omega}t})\left(\omega\times v\right)+\omega\omega^{T}vt\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | The Adjoint Map | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The adjoint is  | |||
|  | \begin_inset Formula  | |||
|  | \begin{eqnarray*} | |||
|  | \Ad T{\xihat} & = & T\xihat T^{-1}\\ | |||
|  |  & = & \left[\begin{array}{cc} | |||
|  | R & t\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | \Skew{\omega} & v\\ | |||
|  | 0 & 0 | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | R^{T} & -R^{T}t\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right]\\ | |||
|  |  & = & \left[\begin{array}{cc} | |||
|  | \Skew{R\omega} & -\Skew{R\omega}t+Rv\\ | |||
|  | 0 & 0 | |||
|  | \end{array}\right]\\ | |||
|  |  & = & \left[\begin{array}{cc} | |||
|  | \Skew{R\omega} & t\times R\omega+Rv\\ | |||
|  | 0 & 0 | |||
|  | \end{array}\right] | |||
|  | \end{eqnarray*} | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | From this we can express the Adjoint map in terms of twist coordinates (see | |||
|  |  also  | |||
|  | \begin_inset CommandInset citation | |||
|  | LatexCommand cite | |||
|  | key "Murray94book" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and FP): | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \left[\begin{array}{c} | |||
|  | \omega'\\ | |||
|  | v' | |||
|  | \end{array}\right]=\left[\begin{array}{cc} | |||
|  | R & 0\\ | |||
|  | \Skew tR & R | |||
|  | \end{array}\right]\left[\begin{array}{c} | |||
|  | \omega\\ | |||
|  | v | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | Actions | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The action of  | |||
|  | \begin_inset Formula $\SEthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  on 3D points is done by embedding the points in  | |||
|  | \begin_inset Formula $\mathbb{R}^{4}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  by using homogeneous coordinates | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \hat{q}=\left[\begin{array}{c} | |||
|  | q\\ | |||
|  | 1 | |||
|  | \end{array}\right]=\left[\begin{array}{c} | |||
|  | Rp+t\\ | |||
|  | 1 | |||
|  | \end{array}\right]=\left[\begin{array}{cc} | |||
|  | R & t\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right]\left[\begin{array}{c} | |||
|  | p\\ | |||
|  | 1 | |||
|  | \end{array}\right]=T\hat{p} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | We would now like to know what an incremental rotation parameterized by | |||
|  |   | |||
|  | \begin_inset Formula $\xi$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  would do: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \hat{q}(\xi)=Te^{\xihat}\hat{p} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | hence the derivative is | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right) | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | where  | |||
|  | \begin_inset Formula $\xihat\hat{p}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  corresponds to a velocity in  | |||
|  | \begin_inset Formula $\mathbb{R}^{4}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  (in the local  | |||
|  | \begin_inset Formula $T$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  frame):  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \xihat\hat{p}=\left[\begin{array}{cc} | |||
|  | \Skew{\omega} & v\\ | |||
|  | 0 & 0 | |||
|  | \end{array}\right]\left[\begin{array}{c} | |||
|  | p\\ | |||
|  | 1 | |||
|  | \end{array}\right]=\left[\begin{array}{c} | |||
|  | \omega\times p+v\\ | |||
|  | 0 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Notice how velocities are analogous to points at infinity in projective | |||
|  |  geometry: they correspond to free vectors indicating a direction and magnitude | |||
|  |  of change. | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | By only taking the top three rows, we can write this as a velocity in  | |||
|  | \begin_inset Formula $\Rthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , as the product of a  | |||
|  | \begin_inset Formula $3\times6$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  matrix  | |||
|  | \begin_inset Formula $H_{p}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  that acts upon the exponential coordinates  | |||
|  | \begin_inset Formula $\xi$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  directly: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \omega\times p+v=-p\times\omega+v=\left[\begin{array}{cc} | |||
|  | -\Skew p & I_{3}\end{array}\right]\left[\begin{array}{c} | |||
|  | \omega\\ | |||
|  | v | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | The inverse action  | |||
|  | \begin_inset Formula $T^{-1}p$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \hat{q}=\left[\begin{array}{c} | |||
|  | q\\ | |||
|  | 1 | |||
|  | \end{array}\right]=\left[\begin{array}{c} | |||
|  | R^{T}(p-t)\\ | |||
|  | 1 | |||
|  | \end{array}\right]=\left[\begin{array}{cc} | |||
|  | R^{T} & -R^{T}t\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right]\left[\begin{array}{c} | |||
|  | p\\ | |||
|  | 1 | |||
|  | \end{array}\right]=T^{-1}\hat{p} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Newpage pagebreak | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Section | |||
|  | 2D Affine Transformations | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The Lie group  | |||
|  | \begin_inset Formula $Aff(2)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a subgroup of the general linear group  | |||
|  | \begin_inset Formula $GL(3)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  of  | |||
|  | \begin_inset Formula $3\times3$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  invertible matrices that maps the line infinity to itself, and hence preserves | |||
|  |  paralellism. | |||
|  |  The affine transformation matrices  | |||
|  | \begin_inset Formula $A$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  can be written as  | |||
|  | \begin_inset CommandInset citation | |||
|  | LatexCommand cite | |||
|  | key "Mei08tro" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \family roman | |||
|  | \series medium | |||
|  | \shape up | |||
|  | \size normal | |||
|  | \emph off | |||
|  | \bar no | |||
|  | \noun off | |||
|  | \color none | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \left[\begin{array}{ccc} | |||
|  | m_{11} & m_{12} & t_{1}\\ | |||
|  | m_{21} & m_{22} & t_{2}\\ | |||
|  | 0 & 0 & k | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | with  | |||
|  | \begin_inset Formula $M\in GL(2)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | ,  | |||
|  | \begin_inset Formula $t\in\Rtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , and  | |||
|  | \begin_inset Formula $k$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  a scalar chosen such that  | |||
|  | \begin_inset Formula $det(A)=1$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |   | |||
|  | \family default | |||
|  | \series default | |||
|  | \shape default | |||
|  | \size default | |||
|  | \emph default | |||
|  | \bar default | |||
|  | \noun default | |||
|  | \color inherit | |||
|  | Note that just as  | |||
|  | \begin_inset Formula $\SEtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a semi-direct product, so too is  | |||
|  | \begin_inset Formula $Aff(2)=\Rtwo\rtimes GL(2)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  In particular, any affine transformation  | |||
|  | \begin_inset Formula $A$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  can be written as | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | A=\left[\begin{array}{cc} | |||
|  | 0 & t\\ | |||
|  | 0 & 1 | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | M & 0\\ | |||
|  | 0 & k | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | and they compose as | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | A_{1}A_{2}=\left[\begin{array}{cc} | |||
|  | M_{1} & t_{1}\\ | |||
|  | 0 & k_{1} | |||
|  | \end{array}\right]\left[\begin{array}{cc} | |||
|  | M_{2} & t_{2}\\ | |||
|  | 0 & k_{2} | |||
|  | \end{array}\right]=\left[\begin{array}{cc} | |||
|  | M_{1}M_{2} & M_{2}t_{2}+k_{2}t_{1}\\ | |||
|  | 0 & k_{1}k_{2} | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | From this it can be gleaned that the groups  | |||
|  | \begin_inset Formula $\SOtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and  | |||
|  | \begin_inset Formula $\SEtwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  are both subgroups, with  | |||
|  | \begin_inset Formula $\SOtwo\subset\SEtwo\subset\Afftwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |   | |||
|  | \family roman | |||
|  | \series medium | |||
|  | \shape up | |||
|  | \size normal | |||
|  | \emph off | |||
|  | \bar no | |||
|  | \noun off | |||
|  | \color none | |||
|  | By choosing the generators carefully we maintain this hierarchy among the | |||
|  |  associated Lie algebras. | |||
|  |  In particular,  | |||
|  | \begin_inset Formula $\setwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |   | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | G^{1}=\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 1\\ | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right]\mbox{ }G^{2}=\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 0 & 1\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right]\mbox{ }G^{3}=\left[\begin{array}{ccc} | |||
|  | 0 & -1 & 0\\ | |||
|  | 1 & 0 & 0\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | can be extended to the  | |||
|  | \family default | |||
|  | \series default | |||
|  | \shape default | |||
|  | \size default | |||
|  | \emph default | |||
|  | \bar default | |||
|  | \noun default | |||
|  | \color inherit | |||
|  | Lie algebra | |||
|  | \family roman | |||
|  | \series medium | |||
|  | \shape up | |||
|  | \size normal | |||
|  | \emph off | |||
|  | \bar no | |||
|  | \noun off | |||
|  | \color none | |||
|  |   | |||
|  | \begin_inset Formula $\afftwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  using the three additional generators | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | G^{4}=\left[\begin{array}{ccc} | |||
|  | 0 & 1 & 0\\ | |||
|  | 1 & 0 & 0\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right]\mbox{ }G^{5}=\left[\begin{array}{ccc} | |||
|  | 1 & 0 & 0\\ | |||
|  | 0 & -1 & 0\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & -1 & 0\\ | |||
|  | 0 & 0 & 1 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \family default | |||
|  | \series default | |||
|  | \shape default | |||
|  | \size default | |||
|  | \emph default | |||
|  | \bar default | |||
|  | \noun default | |||
|  | \color inherit | |||
|  | Hence, the Lie algebra  | |||
|  | \begin_inset Formula $\afftwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is the vector space of  | |||
|  | \begin_inset Formula $3\times3$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  incremental affine transformations  | |||
|  | \begin_inset Formula $\ahat$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  parameterized by 6 parameters  | |||
|  | \begin_inset Formula $\aa\in\mathbb{R}^{6}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , with the mapping  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \aa\rightarrow\ahat\define\left[\begin{array}{ccc} | |||
|  | a_{5} & a_{4}-a_{3} & a_{1}\\ | |||
|  | a_{4}+a_{3} & -a_{5}-a_{6} & a_{2}\\ | |||
|  | 0 & 0 & a_{6} | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Note that  | |||
|  | \begin_inset Formula $G_{5}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and  | |||
|  | \begin_inset Formula $G_{6}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  change the relative scale of  | |||
|  | \begin_inset Formula $x$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and  | |||
|  | \begin_inset Formula $y$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  but without changing the determinant:  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | e^{xG_{5}}=\exp\left[\begin{array}{ccc} | |||
|  | x & 0 & 0\\ | |||
|  | 0 & -x & 0\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right]=\left[\begin{array}{ccc} | |||
|  | e^{x} & 0 & 0\\ | |||
|  | 0 & 1/e^{x} & 0\\ | |||
|  | 0 & 0 & 1 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | e^{xG_{6}}=\exp\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & -x & 0\\ | |||
|  | 0 & 0 & x | |||
|  | \end{array}\right]=\left[\begin{array}{ccc} | |||
|  | 1 & 0 & 0\\ | |||
|  | 0 & 1/e^{x} & 0\\ | |||
|  | 0 & 0 & e^{x} | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | It might be nicer to have the correspondence with scaling  | |||
|  | \begin_inset Formula $x$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and  | |||
|  | \begin_inset Formula $y$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  more direct, by choosing | |||
|  | \family roman | |||
|  | \series medium | |||
|  | \shape up | |||
|  | \size normal | |||
|  | \emph off | |||
|  | \bar no | |||
|  | \noun off | |||
|  | \color none | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | \mbox{ }G^{5}=\left[\begin{array}{ccc} | |||
|  | 1 & 0 & 0\\ | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 0 & -1 | |||
|  | \end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 1 & 0\\ | |||
|  | 0 & 0 & -1 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | and hence | |||
|  | \family default | |||
|  | \series default | |||
|  | \shape default | |||
|  | \size default | |||
|  | \emph default | |||
|  | \bar default | |||
|  | \noun default | |||
|  | \color inherit | |||
|  |   | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | e^{xG_{5}}=\exp\left[\begin{array}{ccc} | |||
|  | x & 0 & 0\\ | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 0 & -x | |||
|  | \end{array}\right]=\left[\begin{array}{ccc} | |||
|  | e^{x} & 0 & 0\\ | |||
|  | 0 & 1 & 0\\ | |||
|  | 0 & 0 & 1/e^{x} | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | e^{xG_{6}}=\exp\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & x & 0\\ | |||
|  | 0 & 0 & -x | |||
|  | \end{array}\right]=\left[\begin{array}{ccc} | |||
|  | 1 & 0 & 0\\ | |||
|  | 0 & e^{x} & 0\\ | |||
|  | 0 & 0 & 1/e^{x} | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Section | |||
|  | 2D Homographies | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | When viewed as operations on images, represented by 2D projective space | |||
|  |   | |||
|  | \begin_inset Formula $\mathcal{P}^{3}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , 3D rotations are a special case of 2D homographies. | |||
|  |  These are now treated, loosely based on the exposition in  | |||
|  | \begin_inset CommandInset citation | |||
|  | LatexCommand cite | |||
|  | key "Mei06iros,Mei08tro" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | Basics | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | The Lie group  | |||
|  | \begin_inset Formula $\SLthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  is a subgroup of the general linear group  | |||
|  | \begin_inset Formula $GL(3)$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  of  | |||
|  | \begin_inset Formula $3\times3$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  invertible matrices with determinant  | |||
|  | \begin_inset Formula $1$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  The homographies generalize transformations of the 2D projective space, | |||
|  |  and  | |||
|  | \begin_inset Formula $\Afftwo\subset\SLthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |   | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | 
 | |||
|  | \family roman | |||
|  | \series medium | |||
|  | \shape up | |||
|  | \size normal | |||
|  | \emph off | |||
|  | \bar no | |||
|  | \noun off | |||
|  | \color none | |||
|  | We can extend  | |||
|  | \begin_inset Formula $\afftwo$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  to the Lie algebra  | |||
|  | \begin_inset Formula $\slthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  by adding two generators | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | G^{7}=\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0\\ | |||
|  | 1 & 0 & 0 | |||
|  | \end{array}\right]\mbox{ }G^{8}=\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 1 & 0 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \family default | |||
|  | \series default | |||
|  | \shape default | |||
|  | \size default | |||
|  | \emph default | |||
|  | \bar default | |||
|  | \noun default | |||
|  | \color inherit | |||
|  | obtaining the vector space of  | |||
|  | \begin_inset Formula $3\times3$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  incremental homographies  | |||
|  | \begin_inset Formula $\hhat$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  parameterized by 8 parameters  | |||
|  | \begin_inset Formula $\hh\in\mathbb{R}^{8}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , with the mapping  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | h\rightarrow\hhat\define\left[\begin{array}{ccc} | |||
|  | h_{5} & h_{4}-h_{3} & h_{1}\\ | |||
|  | h_{4}+h_{3} & -h_{5}-h_{6} & h_{2}\\ | |||
|  | h_{7} & h_{8} & h_{6} | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | Tensor Notation | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Itemize | |||
|  | A homography between 2D projective spaces  | |||
|  | \begin_inset Formula $A$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  and  | |||
|  | \begin_inset Formula $B$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  can be written in tensor notation  | |||
|  | \begin_inset Formula $H_{A}^{B}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Itemize | |||
|  | Applying a homography is then a tensor contraction  | |||
|  | \begin_inset Formula $x^{B}=H_{A}^{B}x^{A}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , mapping points in  | |||
|  | \begin_inset Formula $A$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  to points in  | |||
|  | \begin_inset Formula $B$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Note Note | |||
|  | status collapsed | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | The inverse of a homography can be found by contracting with two permutation | |||
|  |  tensors: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | H_{B}^{A}=H_{A_{1}}^{B_{1}}H_{A_{2}}^{B_{2}}\epsilon_{B_{1}B_{2}B}\epsilon^{A_{1}A_{2}A} | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset Note Note | |||
|  | status collapsed | |||
|  | 
 | |||
|  | \begin_layout Subsection | |||
|  | The Adjoint Map | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Plain Layout | |||
|  | The adjoint can be done using tensor notation. | |||
|  |  Denoting an incremental homography in space  | |||
|  | \begin_inset Formula $A$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  as  | |||
|  | \begin_inset Formula $\hhat_{A_{1}}^{A_{2}}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , we have, for example for  | |||
|  | \begin_inset Formula $G_{1}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \begin{eqnarray*} | |||
|  | \hhat_{B_{1}}^{B_{2}}=\Ad{H_{A}^{B}}{\hhat_{A_{1}}^{A_{2}}} & = & H_{A_{2}}^{B_{2}}\hhat_{A_{1}}^{A_{2}}H_{B_{1}}^{A_{1}}\\ | |||
|  |  & = & H_{A_{2}}^{B_{2}}\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 1\\ | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right]H_{A_{2}}^{B_{2}}H_{A_{3}}^{B_{3}}\epsilon_{B_{1}B_{2}B_{3}}\epsilon^{A_{1}A_{2}A_{3}}\\ | |||
|  |  & = & H_{1}^{B_{2}}H_{A_{2}}^{B_{2}}H_{A_{3}}^{B_{3}}\epsilon_{B_{1}B_{2}B_{3}}\epsilon^{3A_{2}A_{3}} | |||
|  | \end{eqnarray*} | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | This does not seem to help. | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset Newpage pagebreak | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Section* | |||
|  | Appendix: Proof of Property  | |||
|  | \begin_inset CommandInset ref | |||
|  | LatexCommand ref | |||
|  | reference "proof1" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | We can prove the following identity for rotation matrices  | |||
|  | \begin_inset Formula $R$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , | |||
|  | \begin_inset Formula  | |||
|  | \begin{eqnarray} | |||
|  | R\Skew{\omega}R^{T} & = & R\Skew{\omega}\left[\begin{array}{ccc} | |||
|  | a_{1} & a_{2} & a_{3}\end{array}\right]\nonumber \\ | |||
|  |  & = & R\left[\begin{array}{ccc} | |||
|  | \omega\times a_{1} & \omega\times a_{2} & \omega\times a_{3}\end{array}\right]\nonumber \\ | |||
|  |  & = & \left[\begin{array}{ccc} | |||
|  | a_{1}(\omega\times a_{1}) & a_{1}(\omega\times a_{2}) & a_{1}(\omega\times a_{3})\\ | |||
|  | a_{2}(\omega\times a_{1}) & a_{2}(\omega\times a_{2}) & a_{2}(\omega\times a_{3})\\ | |||
|  | a_{3}(\omega\times a_{1}) & a_{3}(\omega\times a_{2}) & a_{3}(\omega\times a_{3}) | |||
|  | \end{array}\right]\nonumber \\ | |||
|  |  & = & \left[\begin{array}{ccc} | |||
|  | \omega(a_{1}\times a_{1}) & \omega(a_{2}\times a_{1}) & \omega(a_{3}\times a_{1})\\ | |||
|  | \omega(a_{1}\times a_{2}) & \omega(a_{2}\times a_{2}) & \omega(a_{3}\times a_{2})\\ | |||
|  | \omega(a_{1}\times a_{3}) & \omega(a_{2}\times a_{3}) & \omega(a_{3}\times a_{3}) | |||
|  | \end{array}\right]\nonumber \\ | |||
|  |  & = & \left[\begin{array}{ccc} | |||
|  | 0 & -\omega a_{3} & \omega a_{2}\\ | |||
|  | \omega a_{3} & 0 & -\omega a_{1}\\ | |||
|  | -\omega a_{2} & \omega a_{1} & 0 | |||
|  | \end{array}\right]\nonumber \\ | |||
|  |  & = & \Skew{R\omega}\label{proof1} | |||
|  | \end{eqnarray} | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | where  | |||
|  | \begin_inset Formula $a_{1}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | ,  | |||
|  | \begin_inset Formula $a_{2}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | , and  | |||
|  | \begin_inset Formula $a_{3}$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  are the  | |||
|  | \emph on | |||
|  | rows | |||
|  | \emph default | |||
|  |  of  | |||
|  | \begin_inset Formula $R$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | . | |||
|  |  Above we made use of the orthogonality of rotation matrices and the triple | |||
|  |  product rule: | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | a(b\times c)=b(c\times a)=c(a\times b) | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | Similarly, without proof  | |||
|  | \begin_inset CommandInset citation | |||
|  | LatexCommand cite | |||
|  | after "Lemma 2.3" | |||
|  | key "Murray94book" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | :  | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | R(a\times b)=Ra\times Rb | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Section* | |||
|  | Appendix: Alternative Generators for  | |||
|  | \begin_inset Formula $\slthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset CommandInset citation | |||
|  | LatexCommand cite | |||
|  | key "Mei06iros" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  |  uses the following generators for  | |||
|  | \begin_inset Formula $\slthree$ | |||
|  | \end_inset | |||
|  | 
 | |||
|  | : | |||
|  | \family roman | |||
|  | \series medium | |||
|  | \shape up | |||
|  | \size normal | |||
|  | \emph off | |||
|  | \bar no | |||
|  | \noun off | |||
|  | \color none | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | G^{1}=\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 1\\ | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right]\mbox{ }G^{2}=\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 0 & 1\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right]\mbox{ }G^{3}=\left[\begin{array}{ccc} | |||
|  | 0 & 1 & 0\\ | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | G^{4}=\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 0\\ | |||
|  | 1 & 0 & 0\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right]\mbox{ }G^{5}=\left[\begin{array}{ccc} | |||
|  | 1 & 0 & 0\\ | |||
|  | 0 & -1 & 0\\ | |||
|  | 0 & 0 & 0 | |||
|  | \end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & -1 & 0\\ | |||
|  | 0 & 0 & 1 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \begin_inset Formula  | |||
|  | \[ | |||
|  | G^{7}=\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0\\ | |||
|  | 1 & 0 & 0 | |||
|  | \end{array}\right]\mbox{ }G^{8}=\left[\begin{array}{ccc} | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 0 & 0\\ | |||
|  | 0 & 1 & 0 | |||
|  | \end{array}\right] | |||
|  | \] | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \family default | |||
|  | \series default | |||
|  | \shape default | |||
|  | \size default | |||
|  | \emph default | |||
|  | \bar default | |||
|  | \noun default | |||
|  | \color inherit | |||
|  | We choose to use a different linear combination as the basis. | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \begin_layout Standard | |||
|  | \begin_inset CommandInset bibtex | |||
|  | LatexCommand bibtex | |||
|  | bibfiles "../../../papers/refs" | |||
|  | options "plain" | |||
|  | 
 | |||
|  | \end_inset | |||
|  | 
 | |||
|  | 
 | |||
|  | \end_layout | |||
|  | 
 | |||
|  | \end_body | |||
|  | \end_document |