147 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Matlab
		
	
	
		
		
			
		
	
	
			147 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Matlab
		
	
	
|  | import gtsam.*; | ||
|  | 
 | ||
|  | deltaT = 0.001; | ||
|  | summarizedDeltaT = 0.1; | ||
|  | timeElapsed = 1; | ||
|  | times = 0:deltaT:timeElapsed; | ||
|  | 
 | ||
|  | omega = [0;0;2*pi]; | ||
|  | velocity = [1;0;0]; | ||
|  | 
 | ||
|  | summaryTemplate = gtsam.ImuFactorPreintegratedMeasurements( ... | ||
|  |     gtsam.imuBias.ConstantBias([0;0;0], [0;0;0]), ... | ||
|  |     1e-3 * eye(3), 1e-3 * eye(3), 1e-3 * eye(3)); | ||
|  | 
 | ||
|  | %% Set initial conditions for the true trajectory and for the estimates | ||
|  | % (one estimate is obtained by integrating in the body frame, the other | ||
|  | % by integrating in the navigation frame) | ||
|  | % Initial state (body) | ||
|  | currentPoseGlobal = Pose3; | ||
|  | currentVelocityGlobal = velocity; | ||
|  | % Initial state estimate (integrating in navigation frame) | ||
|  | currentPoseGlobalIMUnav = currentPoseGlobal; | ||
|  | currentVelocityGlobalIMUnav = currentVelocityGlobal; | ||
|  | % Initial state estimate (integrating in the body frame) | ||
|  | currentPoseGlobalIMUbody = currentPoseGlobal; | ||
|  | currentVelocityGlobalIMUbody = currentVelocityGlobal; | ||
|  | 
 | ||
|  | %% Prepare data structures for actual trajectory and estimates | ||
|  | % Actual trajectory | ||
|  | positions = zeros(3, length(times)+1); | ||
|  | positions(:,1) = currentPoseGlobal.translation.vector; | ||
|  | poses(1).p = positions(:,1); | ||
|  | poses(1).R = currentPoseGlobal.rotation.matrix; | ||
|  | 
 | ||
|  | % Trajectory estimate (integrated in the navigation frame) | ||
|  | positionsIMUnav = zeros(3, length(times)+1); | ||
|  | positionsIMUnav(:,1) = currentPoseGlobalIMUbody.translation.vector; | ||
|  | posesIMUnav(1).p = positionsIMUnav(:,1); | ||
|  | posesIMUnav(1).R = poses(1).R; | ||
|  | 
 | ||
|  | % Trajectory estimate (integrated in the body frame) | ||
|  | positionsIMUbody = zeros(3, length(times)+1); | ||
|  | positionsIMUbody(:,1) = currentPoseGlobalIMUbody.translation.vector; | ||
|  | posesIMUbody(1).p = positionsIMUbody(:,1); | ||
|  | posesIMUbody(1).R = poses(1).R; | ||
|  | 
 | ||
|  | %% Solver object | ||
|  | isamParams = ISAM2Params; | ||
|  | isamParams.setRelinearizeSkip(1); | ||
|  | isam = gtsam.ISAM2(isamParams); | ||
|  | 
 | ||
|  | initialValues = Values; | ||
|  | initialValues.insert(symbol('x',0), currentPoseGlobal); | ||
|  | initialValues.insert(symbol('v',0), LieVector(currentVelocityGlobal)); | ||
|  | initialValues.insert(symbol('b',0), imuBias.ConstantBias([0;0;0],[0;0;0])); | ||
|  | initialFactors = NonlinearFactorGraph; | ||
|  | initialFactors.add(PriorFactorPose3(symbol('x',0), ... | ||
|  |     currentPoseGlobal, noiseModel.Isotropic.Sigma(6, 1.0))); | ||
|  | initialFactors.add(PriorFactorLieVector(symbol('v',0), ... | ||
|  |     LieVector(currentVelocityGlobal), noiseModel.Isotropic.Sigma(3, 1.0))); | ||
|  | initialFactors.add(PriorFactorConstantBias(symbol('b',0), ... | ||
|  |     imuBias.ConstantBias([0;0;0],[0;0;0]), noiseModel.Isotropic.Sigma(6, 1.0))); | ||
|  | 
 | ||
|  | %% Main loop | ||
|  | i = 2; | ||
|  | lastSummaryTime = 0; | ||
|  | lastSummaryIndex = 0; | ||
|  | currentSummarizedMeasurement = ImuFactorPreintegratedMeasurements(summaryTemplate); | ||
|  | for t = times | ||
|  |   %% Create the actual trajectory, using the velocities and | ||
|  |   % accelerations in the inertial frame to compute the positions | ||
|  |   [ currentPoseGlobal, currentVelocityGlobal ] = imuSimulator.integrateTrajectory( ... | ||
|  |     currentPoseGlobal, omega, velocity, velocity, deltaT); | ||
|  |    | ||
|  |   %% Simulate IMU measurements, considering Coriolis effect  | ||
|  |   % (in this simple example we neglect gravity and there are no other forces acting on the body) | ||
|  |   acc_omega = imuSimulator.calculateIMUMeas_coriolis( ... | ||
|  |     omega, omega, velocity, velocity, deltaT); | ||
|  | 
 | ||
|  |   %% Accumulate preintegrated measurement | ||
|  |   currentSummarizedMeasurement.integrateMeasurement(acc_omega(1:3), acc_omega(4:6), deltaT); | ||
|  |    | ||
|  |   %% Update solver | ||
|  |   if t - lastSummaryTime >= summarizedDeltaT | ||
|  |       % Create IMU factor | ||
|  |       initialFactors.add(ImuFactor( ... | ||
|  |           symbol('x',lastSummaryIndex), symbol('v',lastSummaryIndex), ... | ||
|  |           symbol('x',lastSummaryIndex+1), symbol('v',lastSummaryIndex+1), ... | ||
|  |           symbol('b',0), currentSummarizedMeasurement, [0;0;1], [0;0;0], ... | ||
|  |           noiseModel.Isotropic.Sigma(9, 1e-6))); | ||
|  |        | ||
|  |       % Predict movement in a straight line (bad initialization) | ||
|  |       if lastSummaryIndex > 0 | ||
|  |           initialPose = isam.calculateEstimate(symbol('x',lastSummaryIndex)) ... | ||
|  |               .compose(Pose3(Rot3, Point3(  velocity * t - lastSummaryTime)  )); | ||
|  |           initialVel = isam.calculateEstimate(symbol('v',lastSummaryIndex)); | ||
|  |       else | ||
|  |           initialPose = Pose3; | ||
|  |           initialVel = LieVector(velocity); | ||
|  |       end | ||
|  |       initialValues.insert(symbol('x',lastSummaryIndex+1), initialPose); | ||
|  |       initialValues.insert(symbol('v',lastSummaryIndex+1), initialVel); | ||
|  |        | ||
|  |       % Update solver | ||
|  |       isam.update(initialFactors, initialValues); | ||
|  |       initialFactors = NonlinearFactorGraph; | ||
|  |       initialValues = Values; | ||
|  |        | ||
|  |       lastSummaryIndex = lastSummaryIndex + 1; | ||
|  |       lastSummaryTime = t; | ||
|  |       currentSummarizedMeasurement = ImuFactorPreintegratedMeasurements(summaryTemplate); | ||
|  |   end | ||
|  |    | ||
|  |   %% Integrate in the body frame | ||
|  |   [ currentPoseGlobalIMUbody, currentVelocityGlobalIMUbody ] = imuSimulator.integrateIMUTrajectory_bodyFrame( ... | ||
|  |     currentPoseGlobalIMUbody, currentVelocityGlobalIMUbody, acc_omega, deltaT, velocity); | ||
|  | 
 | ||
|  |   %% Integrate in the navigation frame | ||
|  |   [ currentPoseGlobalIMUnav, currentVelocityGlobalIMUnav ] = imuSimulator.integrateIMUTrajectory_navFrame( ... | ||
|  |     currentPoseGlobalIMUnav, currentVelocityGlobalIMUnav, acc_omega, deltaT); | ||
|  |    | ||
|  |   %% Store data in some structure for statistics and plots | ||
|  |   positions(:,i) = currentPoseGlobal.translation.vector; | ||
|  |   positionsIMUbody(:,i) = currentPoseGlobalIMUbody.translation.vector; | ||
|  |   positionsIMUnav(:,i) = currentPoseGlobalIMUnav.translation.vector;   | ||
|  |   % -  | ||
|  |   poses(i).p = positions(:,i); | ||
|  |   posesIMUbody(i).p = positionsIMUbody(:,i); | ||
|  |   posesIMUnav(i).p = positionsIMUnav(:,i);  | ||
|  |   % - | ||
|  |   poses(i).R = currentPoseGlobal.rotation.matrix; | ||
|  |   posesIMUbody(i).R = currentPoseGlobalIMUbody.rotation.matrix; | ||
|  |   posesIMUnav(i).R = currentPoseGlobalIMUnav.rotation.matrix; | ||
|  |   i = i + 1; | ||
|  | end | ||
|  | 
 | ||
|  | figure(1) | ||
|  | hold on; | ||
|  | plot(positions(1,:), positions(2,:), '-b'); | ||
|  | plot(positionsIMUbody(1,:), positionsIMUbody(2,:), '-r'); | ||
|  | plot(positionsIMUnav(1,:), positionsIMUnav(2,:), ':k'); | ||
|  | plot3DTrajectory(isam.calculateEstimate, 'g-'); | ||
|  | axis equal; | ||
|  | legend('true trajectory', 'traj integrated in body', 'traj integrated in nav') | ||
|  | 
 | ||
|  | 
 |