| 
									
										
										
										
											2016-06-17 06:22:02 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-06-17 05:54:32 +08:00
										 |  |  | /**
 | 
					
						
							|  |  |  |  * @file     QPInitSolver.h | 
					
						
							| 
									
										
										
										
											2016-06-17 06:22:02 +08:00
										 |  |  |  * @brief    This finds a feasible solution for a QP problem | 
					
						
							| 
									
										
										
										
											2016-06-17 05:54:32 +08:00
										 |  |  |  * @author   Duy Nguyen Ta | 
					
						
							|  |  |  |  * @author   Ivan Dario Jimenez | 
					
						
							|  |  |  |  * @date     6/16/16 | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #pragma once
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <gtsam_unstable/linear/LPInitSolver.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | namespace gtsam { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * This class finds a feasible solution for a QP problem. | 
					
						
							|  |  |  |  * This uses the Matlab strategy for initialization | 
					
						
							|  |  |  |  * For details, see | 
					
						
							|  |  |  |  * http://www.mathworks.com/help/optim/ug/quadratic-programming-algorithms.html#brrzwpf-22
 | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | class QPInitSolver { | 
					
						
							|  |  |  |     const QP& qp_; | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     /// Constructor with a QP problem
 | 
					
						
							|  |  |  |     QPInitSolver(const QP& qp) : qp_(qp) {} | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2016-06-17 06:22:02 +08:00
										 |  |  |     ///@return a feasible initialization point
 | 
					
						
							| 
									
										
										
										
											2016-06-17 05:54:32 +08:00
										 |  |  |     VectorValues solve() const { | 
					
						
							|  |  |  |       // Make an LP with any linear cost function. It doesn't matter for
 | 
					
						
							|  |  |  |       // initialization.
 | 
					
						
							|  |  |  |       LP initProblem; | 
					
						
							|  |  |  |       // make an unrelated key for a random variable cost
 | 
					
						
							|  |  |  |       Key newKey = maxKey(qp_) + 1; | 
					
						
							|  |  |  |       initProblem.cost = LinearCost(newKey, Vector::Ones(1)); | 
					
						
							|  |  |  |       initProblem.equalities = qp_.equalities; | 
					
						
							|  |  |  |       initProblem.inequalities = qp_.inequalities; | 
					
						
							|  |  |  |       LPInitSolver initSolver(initProblem); | 
					
						
							|  |  |  |       return initSolver.solve(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | } |