| 
									
										
										
										
											2011-08-19 21:11:04 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2011-10-14 11:23:14 +08:00
										 |  |  | /**
 | 
					
						
							| 
									
										
										
										
											2012-06-04 03:52:35 +08:00
										 |  |  |  * @file Pose2SLAMExample.cpp | 
					
						
							| 
									
										
										
										
											2012-07-22 12:35:12 +08:00
										 |  |  |  * @brief A 2D Pose SLAM example | 
					
						
							| 
									
										
										
										
											2011-10-14 11:23:14 +08:00
										 |  |  |  * @date Oct 21, 2010 | 
					
						
							| 
									
										
										
										
											2012-05-22 12:31:05 +08:00
										 |  |  |  * @author Yong Dian Jian | 
					
						
							| 
									
										
										
										
											2010-10-22 05:38:38 +08:00
										 |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-07-22 12:35:12 +08:00
										 |  |  | /**
 | 
					
						
							|  |  |  |  * A simple 2D pose slam example | 
					
						
							|  |  |  |  *  - The robot moves in a 2 meter square | 
					
						
							|  |  |  |  *  - The robot moves 2 meters each step, turning 90 degrees after each step | 
					
						
							|  |  |  |  *  - The robot initially faces along the X axis (horizontal, to the right in 2D) | 
					
						
							|  |  |  |  *  - We have full odometry between pose | 
					
						
							|  |  |  |  *  - We have a loop closure constraint when the robot returns to the first position | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent
 | 
					
						
							|  |  |  | // the robot positions
 | 
					
						
							|  |  |  | #include <gtsam/geometry/Pose2.h>
 | 
					
						
							|  |  |  | #include <gtsam/geometry/Point2.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Each variable in the system (poses) must be identified with a unique key.
 | 
					
						
							|  |  |  | // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
 | 
					
						
							|  |  |  | // Here we will use simple integer keys
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/Key.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // In GTSAM, measurement functions are represented as 'factors'. Several common factors
 | 
					
						
							|  |  |  | // have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
 | 
					
						
							|  |  |  | // Here we will use Between factors for the relative motion described by odometry measurements.
 | 
					
						
							|  |  |  | // We will also use a Between Factor to encode the loop closure constraint
 | 
					
						
							|  |  |  | // Also, we will initialize the robot at the origin using a Prior factor.
 | 
					
						
							|  |  |  | #include <gtsam/slam/PriorFactor.h>
 | 
					
						
							|  |  |  | #include <gtsam/slam/BetweenFactor.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // When the factors are created, we will add them to a Factor Graph. As the factors we are using
 | 
					
						
							|  |  |  | // are nonlinear factors, we will need a Nonlinear Factor Graph.
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Finally, once all of the factors have been added to our factor graph, we will want to
 | 
					
						
							|  |  |  | // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
 | 
					
						
							|  |  |  | // GTSAM includes several nonlinear optimizers to perform this step. Here we will use the
 | 
					
						
							|  |  |  | // a Gauss-Newton solver
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/GaussNewtonOptimizer.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Once the optimized values have been calculated, we can also calculate the marginal covariance
 | 
					
						
							|  |  |  | // of desired variables
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/Marginals.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
 | 
					
						
							|  |  |  | // nonlinear functions around an initial linearization point, then solve the linear system
 | 
					
						
							|  |  |  | // to update the linearization point. This happens repeatedly until the solver converges
 | 
					
						
							|  |  |  | // to a consistent set of variable values. This requires us to specify an initial guess
 | 
					
						
							|  |  |  | // for each variable, held in a Values container.
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/Values.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2010-10-22 05:38:38 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | using namespace std; | 
					
						
							|  |  |  | using namespace gtsam; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int main(int argc, char** argv) { | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-07-22 12:35:12 +08:00
										 |  |  | 	// 1. Create a factor graph container and add factors to it
 | 
					
						
							|  |  |  | 	NonlinearFactorGraph graph; | 
					
						
							| 
									
										
										
										
											2012-05-22 12:31:05 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-07-22 12:35:12 +08:00
										 |  |  | 	// 2a. Add a prior on the first pose, setting it to the origin
 | 
					
						
							|  |  |  | 	// A prior factor consists of a mean and a noise model (covariance matrix)
 | 
					
						
							|  |  |  | 	Pose2 prior(0.0, 0.0, 0.0); // prior at origin
 | 
					
						
							|  |  |  | 	noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); | 
					
						
							|  |  |  | 	graph.add(PriorFactor<Pose2>(1, prior, priorNoise)); | 
					
						
							| 
									
										
										
										
											2012-05-22 12:31:05 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	// 2b. Add odometry factors
 | 
					
						
							| 
									
										
										
										
											2012-07-22 12:35:12 +08:00
										 |  |  | 	// For simplicity, we will use the same noise model for each odometry factor
 | 
					
						
							|  |  |  | 	noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); | 
					
						
							|  |  |  | 	// Create odometry (Between) factors between consecutive poses
 | 
					
						
							|  |  |  | 	graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, M_PI_2),    odometryNoise)); | 
					
						
							|  |  |  | 	graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise)); | 
					
						
							|  |  |  | 	graph.add(BetweenFactor<Pose2>(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise)); | 
					
						
							|  |  |  | 	graph.add(BetweenFactor<Pose2>(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise)); | 
					
						
							| 
									
										
										
										
											2012-05-22 12:31:05 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-07-22 12:35:12 +08:00
										 |  |  | 	// 2c. Add the loop closure constraint
 | 
					
						
							|  |  |  | 	// This factor encodes the fact that we have returned to the same pose. In real systems,
 | 
					
						
							|  |  |  | 	// these constraints may be identified in many ways, such as appearance-based techniques
 | 
					
						
							|  |  |  | 	// with camera images.
 | 
					
						
							|  |  |  | 	// We will use another Between Factor to enforce this constraint, with the distance set to zero,
 | 
					
						
							|  |  |  | 	noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); | 
					
						
							|  |  |  | 	graph.add(BetweenFactor<Pose2>(5, 1, Pose2(0.0, 0.0, 0.0), model)); | 
					
						
							|  |  |  | 	graph.print("\nFactor Graph:\n"); // print
 | 
					
						
							| 
									
										
										
										
											2012-05-22 12:31:05 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-06-04 08:41:13 +08:00
										 |  |  | 	// 3. Create the data structure to hold the initialEstimate estimate to the solution
 | 
					
						
							| 
									
										
										
										
											2012-07-22 12:35:12 +08:00
										 |  |  | 	// For illustrative purposes, these have been deliberately set to incorrect values
 | 
					
						
							|  |  |  | 	Values initialEstimate; | 
					
						
							|  |  |  | 	initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2)); | 
					
						
							|  |  |  | 	initialEstimate.insert(2, Pose2(2.3, 0.1, 1.1)); | 
					
						
							|  |  |  | 	initialEstimate.insert(3, Pose2(2.1, 1.9, 2.8)); | 
					
						
							|  |  |  | 	initialEstimate.insert(4, Pose2(-.3, 2.5, 4.2)); | 
					
						
							|  |  |  | 	initialEstimate.insert(5, Pose2(0.1,-0.7, 5.8)); | 
					
						
							|  |  |  | 	initialEstimate.print("\nInitial Estimate:\n"); // print
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // 4. Optimize the initial values using a Gauss-Newton nonlinear optimizer
 | 
					
						
							|  |  |  |   // The optimizer accepts an optional set of configuration parameters,
 | 
					
						
							|  |  |  | 	// controlling things like convergence criteria, the type of linear
 | 
					
						
							|  |  |  | 	// system solver to use, and the amount of information displayed during
 | 
					
						
							|  |  |  | 	// optimization. We will set a few parameters as a demonstration.
 | 
					
						
							|  |  |  | 	GaussNewtonParams parameters; | 
					
						
							|  |  |  | 	// Stop iterating once the change in error between steps is less than this value
 | 
					
						
							|  |  |  | 	parameters.relativeErrorTol = 1e-5; | 
					
						
							|  |  |  | 	// Do not perform more than N iteration steps
 | 
					
						
							|  |  |  | 	parameters.maxIterations = 100; | 
					
						
							|  |  |  | 	// Create the optimizer ...
 | 
					
						
							|  |  |  | 	GaussNewtonOptimizer optimizer(graph, initialEstimate, parameters); | 
					
						
							|  |  |  | 	// ... and optimize
 | 
					
						
							|  |  |  |   Values result = optimizer.optimize(); | 
					
						
							|  |  |  |   result.print("Final Result:\n"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // 5. Calculate and print marginal covariances for all variables
 | 
					
						
							|  |  |  |   Marginals marginals(graph, result); | 
					
						
							|  |  |  |   cout << "Pose 1 covariance:\n" << marginals.marginalCovariance(1) << endl; | 
					
						
							|  |  |  |   cout << "Pose 2 covariance:\n" << marginals.marginalCovariance(2) << endl; | 
					
						
							|  |  |  |   cout << "Pose 3 covariance:\n" << marginals.marginalCovariance(3) << endl; | 
					
						
							|  |  |  |   cout << "Pose 4 covariance:\n" << marginals.marginalCovariance(4) << endl; | 
					
						
							|  |  |  |   cout << "Pose 5 covariance:\n" << marginals.marginalCovariance(5) << endl; | 
					
						
							| 
									
										
										
										
											2010-10-22 05:38:38 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 	return 0; | 
					
						
							|  |  |  | } |