| 
									
										
										
										
											2012-01-31 06:00:13 +08:00
										 |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
					
						
							|  |  |  | % GTSAM Copyright 2010, Georgia Tech Research Corporation,  | 
					
						
							|  |  |  | % Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  | % All Rights Reserved | 
					
						
							|  |  |  | % Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | %  | 
					
						
							|  |  |  | % See LICENSE for the license information | 
					
						
							|  |  |  | % | 
					
						
							|  |  |  | % @brief Simple robotics example using the pre-built planar SLAM domain | 
					
						
							|  |  |  | % @author Alex Cunningham | 
					
						
							|  |  |  | % @author Frank Dellaert | 
					
						
							|  |  |  | % @author Chris Beall | 
					
						
							|  |  |  | % @author Vadim Indelman | 
					
						
							|  |  |  | % @author Can Erdogan | 
					
						
							|  |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Assumptions | 
					
						
							|  |  |  | %  - All values are axis aligned | 
					
						
							|  |  |  | %  - Robot poses are facing along the X axis (horizontal, to the right in images) | 
					
						
							|  |  |  | %  - We have full odometry for measurements | 
					
						
							|  |  |  | %  - The robot is on a grid, moving 2 meters each step | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Create keys for variables | 
					
						
							|  |  |  | x1 = 1; x2 = 2; x3 = 3; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Create graph container and add factors to it | 
					
						
							|  |  |  | graph = pose2SLAMGraph; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Add prior | 
					
						
							|  |  |  | % gaussian for prior | 
					
						
							| 
									
										
										
										
											2012-02-13 01:41:57 +08:00
										 |  |  | prior_model = gtsamSharedNoiseModel_Sigmas([0.3; 0.3; 0.1]); | 
					
						
							| 
									
										
										
										
											2012-01-31 06:00:13 +08:00
										 |  |  | prior_measurement = gtsamPose2(0.0, 0.0, 0.0); % prior at origin | 
					
						
							|  |  |  | graph.addPrior(x1, prior_measurement, prior_model); % add directly to graph | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Add odometry | 
					
						
							|  |  |  | % general noisemodel for odometry | 
					
						
							| 
									
										
										
										
											2012-02-13 01:41:57 +08:00
										 |  |  | odom_model = gtsamSharedNoiseModel_Sigmas([0.2; 0.2; 0.1]); | 
					
						
							| 
									
										
										
										
											2012-01-31 06:00:13 +08:00
										 |  |  | odom_measurement = gtsamPose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case) | 
					
						
							|  |  |  | graph.addOdometry(x1, x2, odom_measurement, odom_model); | 
					
						
							|  |  |  | graph.addOdometry(x2, x3, odom_measurement, odom_model); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Add measurements | 
					
						
							|  |  |  | % general noisemodel for measurements | 
					
						
							| 
									
										
										
										
											2012-02-13 01:41:57 +08:00
										 |  |  | meas_model = gtsamSharedNoiseModel_Sigmas([0.1; 0.2]); | 
					
						
							| 
									
										
										
										
											2012-01-31 06:00:13 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | % print | 
					
						
							|  |  |  | graph.print('full graph'); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Initialize to noisy points | 
					
						
							|  |  |  | initialEstimate = pose2SLAMValues; | 
					
						
							|  |  |  | initialEstimate.insertPose(x1, gtsamPose2(0.5, 0.0, 0.2)); | 
					
						
							|  |  |  | initialEstimate.insertPose(x2, gtsamPose2(2.3, 0.1,-0.2)); | 
					
						
							|  |  |  | initialEstimate.insertPose(x3, gtsamPose2(4.1, 0.1, 0.1)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | initialEstimate.print('initial estimate'); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% set up solver, choose ordering and optimize | 
					
						
							| 
									
										
										
										
											2012-05-16 02:46:51 +08:00
										 |  |  | %params = gtsamNonlinearOptimizationParameters_newDecreaseThresholds(1e-15, 1e-15); | 
					
						
							|  |  |  | % | 
					
						
							|  |  |  | %ord = graph.orderingCOLAMD(initialEstimate); | 
					
						
							|  |  |  | % | 
					
						
							| 
									
										
										
										
											2012-02-06 11:33:40 +08:00
										 |  |  | %result = pose2SLAMOptimizer(graph,initialEstimate,ord,params);                       | 
					
						
							|  |  |  | %result.print('final result'); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-01-31 06:00:13 +08:00
										 |  |  | % %      | 
					
						
							|  |  |  | % % disp('\\\'); | 
					
						
							|  |  |  | % %  | 
					
						
							|  |  |  | % % %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd | 
					
						
							| 
									
										
										
										
											2012-02-06 11:33:40 +08:00
										 |  |  | result = graph.optimize(initialEstimate); | 
					
						
							|  |  |  | result.print('final result'); | 
					
						
							| 
									
										
										
										
											2012-01-31 06:00:13 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | %% Get the corresponding dense matrix | 
					
						
							|  |  |  | ord = graph.orderingCOLAMD(result); | 
					
						
							|  |  |  | gfg = graph.linearize(result,ord); | 
					
						
							|  |  |  | denseAb = gfg.denseJacobian; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Get sparse matrix A and RHS b | 
					
						
							|  |  |  | IJS = gfg.sparseJacobian_(); | 
					
						
							|  |  |  | Ab=sparse(IJS(1,:),IJS(2,:),IJS(3,:)); | 
					
						
							|  |  |  | A = Ab(:,1:end-1); | 
					
						
							|  |  |  | b = full(Ab(:,end)); | 
					
						
							|  |  |  | spy(A); |