| 
									
										
										
										
											2014-10-21 05:53:56 +08:00
										 |  |  | // Ceres Solver - A fast non-linear least squares minimizer
 | 
					
						
							|  |  |  | // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
 | 
					
						
							|  |  |  | // http://code.google.com/p/ceres-solver/
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // Redistribution and use in source and binary forms, with or without
 | 
					
						
							|  |  |  | // modification, are permitted provided that the following conditions are met:
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // * Redistributions of source code must retain the above copyright notice,
 | 
					
						
							|  |  |  | //   this list of conditions and the following disclaimer.
 | 
					
						
							|  |  |  | // * Redistributions in binary form must reproduce the above copyright notice,
 | 
					
						
							|  |  |  | //   this list of conditions and the following disclaimer in the documentation
 | 
					
						
							|  |  |  | //   and/or other materials provided with the distribution.
 | 
					
						
							|  |  |  | // * Neither the name of Google Inc. nor the names of its contributors may be
 | 
					
						
							|  |  |  | //   used to endorse or promote products derived from this software without
 | 
					
						
							|  |  |  | //   specific prior written permission.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | 
					
						
							|  |  |  | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
					
						
							|  |  |  | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
					
						
							|  |  |  | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 | 
					
						
							|  |  |  | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | 
					
						
							|  |  |  | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | 
					
						
							|  |  |  | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | 
					
						
							|  |  |  | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | 
					
						
							|  |  |  | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | 
					
						
							|  |  |  | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | 
					
						
							|  |  |  | // POSSIBILITY OF SUCH DAMAGE.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // Author: rennie@google.com (Jeffrey Rennie)
 | 
					
						
							|  |  |  | // Author: sanjay@google.com (Sanjay Ghemawat) -- renamed to FixedArray
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_
 | 
					
						
							|  |  |  | #define CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <cstddef>
 | 
					
						
							|  |  |  | #include <gtsam/3rdparty/gtsam_eigen_includes.h>
 | 
					
						
							|  |  |  | #include <gtsam_unstable/nonlinear/ceres_macros.h>
 | 
					
						
							|  |  |  | #include <gtsam_unstable/nonlinear/ceres_manual_constructor.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | namespace ceres { | 
					
						
							|  |  |  | namespace internal { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // A FixedArray<T> represents a non-resizable array of T where the
 | 
					
						
							|  |  |  | // length of the array does not need to be a compile time constant.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // FixedArray allocates small arrays inline, and large arrays on
 | 
					
						
							|  |  |  | // the heap.  It is a good replacement for non-standard and deprecated
 | 
					
						
							|  |  |  | // uses of alloca() and variable length arrays (a GCC extension).
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // FixedArray keeps performance fast for small arrays, because it
 | 
					
						
							|  |  |  | // avoids heap operations.  It also helps reduce the chances of
 | 
					
						
							|  |  |  | // accidentally overflowing your stack if large input is passed to
 | 
					
						
							|  |  |  | // your function.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // Also, FixedArray is useful for writing portable code.  Not all
 | 
					
						
							|  |  |  | // compilers support arrays of dynamic size.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Most users should not specify an inline_elements argument and let
 | 
					
						
							|  |  |  | // FixedArray<> automatically determine the number of elements
 | 
					
						
							|  |  |  | // to store inline based on sizeof(T).
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // If inline_elements is specified, the FixedArray<> implementation
 | 
					
						
							|  |  |  | // will store arrays of length <= inline_elements inline.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // Finally note that unlike vector<T> FixedArray<T> will not zero-initialize
 | 
					
						
							|  |  |  | // simple types like int, double, bool, etc.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // Non-POD types will be default-initialized just like regular vectors or
 | 
					
						
							|  |  |  | // arrays.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #if defined(_WIN64)
 | 
					
						
							|  |  |  |    typedef __int64      ssize_t; | 
					
						
							|  |  |  | #elif defined(_WIN32)
 | 
					
						
							|  |  |  |    typedef __int32      ssize_t; | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <typename T, ssize_t inline_elements = -1> | 
					
						
							|  |  |  | class FixedArray { | 
					
						
							|  |  |  |  public: | 
					
						
							|  |  |  |   // For playing nicely with stl:
 | 
					
						
							|  |  |  |   typedef T value_type; | 
					
						
							|  |  |  |   typedef T* iterator; | 
					
						
							|  |  |  |   typedef T const* const_iterator; | 
					
						
							|  |  |  |   typedef T& reference; | 
					
						
							|  |  |  |   typedef T const& const_reference; | 
					
						
							|  |  |  |   typedef T* pointer; | 
					
						
							|  |  |  |   typedef std::ptrdiff_t difference_type; | 
					
						
							|  |  |  |   typedef size_t size_type; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // REQUIRES: n >= 0
 | 
					
						
							|  |  |  |   // Creates an array object that can store "n" elements.
 | 
					
						
							|  |  |  |   //
 | 
					
						
							|  |  |  |   // FixedArray<T> will not zero-initialiaze POD (simple) types like int,
 | 
					
						
							|  |  |  |   // double, bool, etc.
 | 
					
						
							|  |  |  |   // Non-POD types will be default-initialized just like regular vectors or
 | 
					
						
							|  |  |  |   // arrays.
 | 
					
						
							|  |  |  |   explicit FixedArray(size_type n); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Releases any resources.
 | 
					
						
							|  |  |  |   ~FixedArray(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Returns the length of the array.
 | 
					
						
							|  |  |  |   inline size_type size() const { return size_; } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Returns the memory size of the array in bytes.
 | 
					
						
							|  |  |  |   inline size_t memsize() const { return size_ * sizeof(T); } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Returns a pointer to the underlying element array.
 | 
					
						
							|  |  |  |   inline const T* get() const { return &array_[0].element; } | 
					
						
							|  |  |  |   inline T* get() { return &array_[0].element; } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // REQUIRES: 0 <= i < size()
 | 
					
						
							|  |  |  |   // Returns a reference to the "i"th element.
 | 
					
						
							|  |  |  |   inline T& operator[](size_type i) { | 
					
						
							| 
									
										
										
										
											2014-11-09 11:16:32 +08:00
										 |  |  |     assert(i < size_); | 
					
						
							| 
									
										
										
										
											2014-10-21 05:53:56 +08:00
										 |  |  |     return array_[i].element; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // REQUIRES: 0 <= i < size()
 | 
					
						
							|  |  |  |   // Returns a reference to the "i"th element.
 | 
					
						
							|  |  |  |   inline const T& operator[](size_type i) const { | 
					
						
							| 
									
										
										
										
											2014-11-09 11:16:32 +08:00
										 |  |  |     assert(i < size_); | 
					
						
							| 
									
										
										
										
											2014-10-21 05:53:56 +08:00
										 |  |  |     return array_[i].element; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   inline iterator begin() { return &array_[0].element; } | 
					
						
							|  |  |  |   inline iterator end() { return &array_[size_].element; } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   inline const_iterator begin() const { return &array_[0].element; } | 
					
						
							|  |  |  |   inline const_iterator end() const { return &array_[size_].element; } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  private: | 
					
						
							|  |  |  |   // Container to hold elements of type T.  This is necessary to handle
 | 
					
						
							|  |  |  |   // the case where T is a a (C-style) array.  The size of InnerContainer
 | 
					
						
							|  |  |  |   // and T must be the same, otherwise callers' assumptions about use
 | 
					
						
							|  |  |  |   // of this code will be broken.
 | 
					
						
							|  |  |  |   struct InnerContainer { | 
					
						
							|  |  |  |     T element; | 
					
						
							|  |  |  |   }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // How many elements should we store inline?
 | 
					
						
							|  |  |  |   //   a. If not specified, use a default of 256 bytes (256 bytes
 | 
					
						
							|  |  |  |   //      seems small enough to not cause stack overflow or unnecessary
 | 
					
						
							|  |  |  |   //      stack pollution, while still allowing stack allocation for
 | 
					
						
							|  |  |  |   //      reasonably long character arrays.
 | 
					
						
							|  |  |  |   //   b. Never use 0 length arrays (not ISO C++)
 | 
					
						
							|  |  |  |   static const size_type S1 = ((inline_elements < 0) | 
					
						
							|  |  |  |                                ? (256/sizeof(T)) : inline_elements); | 
					
						
							|  |  |  |   static const size_type S2 = (S1 <= 0) ? 1 : S1; | 
					
						
							|  |  |  |   static const size_type kInlineElements = S2; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   size_type const       size_; | 
					
						
							|  |  |  |   InnerContainer* const array_; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Allocate some space, not an array of elements of type T, so that we can
 | 
					
						
							|  |  |  |   // skip calling the T constructors and destructors for space we never use.
 | 
					
						
							|  |  |  |   ManualConstructor<InnerContainer> inline_space_[kInlineElements]; | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Implementation details follow
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <class T, ssize_t S> | 
					
						
							|  |  |  | inline FixedArray<T, S>::FixedArray(typename FixedArray<T, S>::size_type n) | 
					
						
							|  |  |  |     : size_(n), | 
					
						
							|  |  |  |       array_((n <= kInlineElements | 
					
						
							|  |  |  |               ? reinterpret_cast<InnerContainer*>(inline_space_) | 
					
						
							|  |  |  |               : new InnerContainer[n])) { | 
					
						
							|  |  |  |   // Construct only the elements actually used.
 | 
					
						
							|  |  |  |   if (array_ == reinterpret_cast<InnerContainer*>(inline_space_)) { | 
					
						
							|  |  |  |     for (size_t i = 0; i != size_; ++i) { | 
					
						
							|  |  |  |       inline_space_[i].Init(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <class T, ssize_t S> | 
					
						
							|  |  |  | inline FixedArray<T, S>::~FixedArray() { | 
					
						
							|  |  |  |   if (array_ != reinterpret_cast<InnerContainer*>(inline_space_)) { | 
					
						
							|  |  |  |     delete[] array_; | 
					
						
							|  |  |  |   } else { | 
					
						
							|  |  |  |     for (size_t i = 0; i != size_; ++i) { | 
					
						
							|  |  |  |       inline_space_[i].Destroy(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | }  // namespace internal
 | 
					
						
							|  |  |  | }  // namespace ceres
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif  // CERES_PUBLIC_INTERNAL_FIXED_ARRAY_H_
 |