gtsam/python/gtsam_examples/ImuFactorExample.py

105 lines
3.8 KiB
Python
Raw Normal View History

2016-01-27 05:19:25 +08:00
"""
A script validating the ImuFactor inference.
2016-01-27 05:19:25 +08:00
"""
2016-01-28 06:16:18 +08:00
from __future__ import print_function
2016-01-27 06:41:55 +08:00
import math
2016-01-27 05:19:25 +08:00
import matplotlib.pyplot as plt
import numpy as np
2016-01-27 06:41:55 +08:00
from mpl_toolkits.mplot3d import Axes3D
import gtsam
from gtsam_utils import plotPose3
2016-01-28 06:16:18 +08:00
from PreintegrationExample import PreintegrationExample, POSES_FIG
# shorthand symbols:
BIAS_KEY = int(gtsam.Symbol('b', 0))
V = lambda j: int(gtsam.Symbol('v', j))
X = lambda i: int(gtsam.Symbol('x', i))
2016-01-27 06:41:55 +08:00
class ImuFactorExample(PreintegrationExample):
2016-01-27 05:19:25 +08:00
def __init__(self):
self.velocity = np.array([2, 0, 0])
forward_twist = (np.zeros(3), self.velocity)
loop_twist = (np.array([0, -math.radians(30), 0]), self.velocity)
super(ImuFactorExample, self).__init__(loop_twist)
2016-01-27 05:19:25 +08:00
def run(self):
2016-01-28 06:16:18 +08:00
graph = gtsam.NonlinearFactorGraph()
2016-01-28 06:16:18 +08:00
i = 0 # state index
# initialize data structure for pre-integrated IMU measurements
pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)
2016-01-28 06:16:18 +08:00
# simulate the loop
T = 3
2016-01-28 13:23:57 +08:00
actual_state_i = self.scenario.navState(0)
2016-01-28 06:16:18 +08:00
for k, t in enumerate(np.arange(0, T, self.dt)):
# get measurements and add them to PIM
2016-01-27 09:37:38 +08:00
measuredOmega = self.runner.measuredAngularVelocity(t)
measuredAcc = self.runner.measuredSpecificForce(t)
2016-01-28 06:16:18 +08:00
pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt)
# Plot every second
if k % 100 == 0:
self.plotImu(t, measuredOmega, measuredAcc)
self.plotGroundTruthPose(t)
2016-01-28 06:16:18 +08:00
# create factor every second
if (k + 1) % 100 == 0:
factor = gtsam.ImuFactor(X(i), V(i), X(i + 1), V(i + 1), BIAS_KEY, pim)
graph.push_back(factor)
H1 = gtsam.OptionalJacobian9()
H2 = gtsam.OptionalJacobian96()
2016-01-28 13:23:57 +08:00
predicted_state_j = pim.predict(actual_state_i, self.actualBias, H1, H2)
error = pim.computeError(actual_state_i, predicted_state_j, self.actualBias, H1, H1, H2)
print("error={}, norm ={}".format(error, np.linalg.norm(error)))
2016-01-28 06:16:18 +08:00
pim.resetIntegration()
2016-01-28 13:23:57 +08:00
actual_state_i = self.scenario.navState(t + self.dt)
2016-01-28 06:16:18 +08:00
i += 1
# add priors on beginning and end
2016-01-28 06:16:18 +08:00
num_poses = i + 1
priorNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1)
velNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
for i, pose in [(0, self.scenario.pose(0)), (num_poses - 1, self.scenario.pose(T))]:
graph.push_back(gtsam.PriorFactorPose3(X(i), pose, priorNoise))
graph.push_back(gtsam.PriorFactorVector3(V(i), self.velocity, velNoise))
# graph.print("\Graph:\n")
2016-01-28 06:16:18 +08:00
initial = gtsam.Values()
initial.insert(BIAS_KEY, self.actualBias)
2016-01-28 06:16:18 +08:00
for i in range(num_poses):
2016-01-28 13:23:57 +08:00
state_i = self.scenario.navState(float(i))
plotPose3(POSES_FIG, state_i.pose(), 0.9)
initial.insert(X(i), state_i.pose())
initial.insert(V(i), state_i.velocity())
2016-01-28 06:16:18 +08:00
2016-01-28 13:23:57 +08:00
for idx in range(num_poses - 1):
ff = gtsam.getNonlinearFactor(graph, idx)
print(ff.error(initial))
2016-01-28 06:16:18 +08:00
# optimize using Levenberg-Marquardt optimization
params = gtsam.LevenbergMarquardtParams()
params.setVerbosityLM("SUMMARY")
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = optimizer.optimize()
2016-01-28 13:23:57 +08:00
result.print("\Result:\n")
2016-01-27 06:41:55 +08:00
2016-01-28 06:16:18 +08:00
# Plot cameras
i = 0
while result.exists(X(i)):
pose_i = result.pose3_at(X(i))
plotPose3(POSES_FIG, pose_i, 0.1)
i += 1
2016-01-27 06:41:55 +08:00
plt.ioff()
plt.show()
2016-01-27 05:19:25 +08:00
if __name__ == '__main__':
ImuFactorExample().run()