2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								/**
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								 * @file   Simulated3D.h
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 * @brief  measurement functions and derivatives for simulated 3D robot
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 * @author Alex Cunningham
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 **/
							 | 
						
					
						
							
								
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								// \callgraph
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#pragma once
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								#include "Matrix.h"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include "VectorConfig.h"
							 | 
						
					
						
							
								
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include "NonlinearFactor.h"
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-18 03:34:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								#include "Key.h"
							 | 
						
					
						
							
								
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								// \namespace
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								namespace gtsam {
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								namespace simulated3D {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									typedef VectorConfig VectorConfig;
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-18 03:34:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									typedef gtsam::Symbol PoseKey;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									typedef gtsam::Symbol PointKey;
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
									/**
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									 * Prior on a single pose
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									 */
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Vector prior(const Vector& x);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Matrix Dprior(const Vector& x);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
									/**
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									 * odometry between two poses
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									 */
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Vector odo(const Vector& x1, const Vector& x2);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Matrix Dodo1(const Vector& x1, const Vector& x2);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Matrix Dodo2(const Vector& x1, const Vector& x2);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
									/**
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									 *  measurement between landmark and pose
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									 */
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Vector mea(const Vector& x, const Vector& l);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Matrix Dmea1(const Vector& x, const Vector& l);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
									Matrix Dmea2(const Vector& x, const Vector& l);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									struct Point2Prior3D: public NonlinearFactor1<VectorConfig, PoseKey,
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
											Vector> {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										Vector z_;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
										Point2Prior3D(const Vector& z,
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-23 01:36:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
													const SharedGaussian& model, const PoseKey& j) :
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
												NonlinearFactor1<VectorConfig, PoseKey, Vector> (model, j), z_(z) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											}
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										Vector evaluateError(const Vector& x, boost::optional<Matrix&> H =
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
												boost::none) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											if (H) *H = Dprior(x);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											return prior(x) - z_;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										}
							 | 
						
					
						
							
								
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
									};
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
									struct Simulated3DMeasurement: public NonlinearFactor2<VectorConfig,
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
											PoseKey, Vector, PointKey, Vector> {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										Vector z_;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
										Simulated3DMeasurement(const Vector& z,
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-23 01:36:57 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
													const SharedGaussian& model, PoseKey& j1, PointKey j2) :
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
												z_(z),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
														NonlinearFactor2<VectorConfig, PoseKey, Vector, PointKey, Vector> (
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
																model, j1, j2) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											}
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										Vector evaluateError(const Vector& x1, const Vector& x2, boost::optional<
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
												Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 = boost::none) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											if (H1) *H1 = Dmea1(x1, x2);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											if (H2) *H2 = Dmea2(x1, x2);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
											return mea(x1, x2) - z_;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
										}
							 | 
						
					
						
							
								
									
										
										
										
											2009-08-22 06:23:24 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
									};
							 | 
						
					
						
							
								
									
										
											 
										 
										
											
												Large gtsam refactoring
To support faster development *and* better performance Richard and I pushed through a large refactoring of NonlinearFactors.
The following are the biggest changes:
1) NonLinearFactor1 and NonLinearFactor2 are now templated on Config, Key type, and X type, where X is the argument to the measurement function.
2) The measurement itself is no longer kept in the nonlinear factor. Instead, a derived class (see testVSLAMFactor, testNonlinearEquality, testPose3Factor etc...) has to implement a function to compute the errors, "evaluateErrors". Instead of (h(x)-z), it needs to return (z-h(x)), so Ax-b is an approximation of the error. IMPORTANT: evaluateErrors needs - if asked - *combine* the calculation of the function value h(x) and the derivatives dh(x)/dx. This was a major performance issue. To do this, boost::optional<Matrix&> arguments are provided, and tin EvaluateErrors you just  says something like
	if (H) *H = Matrix_(3,6,....);
3) We are no longer using int or strings for nonlinear factors. Instead, the preferred key type is now Symbol, defined in Key.h. This is both fast and cool: you can construct it from an int, and cast it to a strong. It also does type checking: a Symbol<Pose3,'x'> will not match a Symbol<Pose2,'x'>
4) minor: take a look at LieConfig.h: it help you avoid writing a lot of code bu automatically creating configs for a certain type. See e.g. Pose3Config.h. A "double" LieConfig is on the way - Thanks Richard and Manohar !
											
										 
										
											2010-01-14 06:25:03 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2010-01-18 13:38:53 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								}} // namespace simulated3D
							 |