| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation,  | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  *  @file  BetweenFactorEM.h | 
					
						
							|  |  |  |  *  @author Vadim Indelman | 
					
						
							|  |  |  |  **/ | 
					
						
							|  |  |  | #pragma once
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <ostream>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <gtsam/base/Testable.h>
 | 
					
						
							|  |  |  | #include <gtsam/base/Lie.h>
 | 
					
						
							|  |  |  | #include <gtsam/nonlinear/NonlinearFactor.h>
 | 
					
						
							|  |  |  | #include <gtsam/linear/GaussianFactor.h>
 | 
					
						
							| 
									
										
										
										
											2014-07-01 01:43:25 +08:00
										 |  |  | #include <gtsam/nonlinear/Marginals.h>
 | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | namespace gtsam { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /**
 | 
					
						
							|  |  |  |    * A class for a measurement predicted by "between(config[key1],config[key2])" | 
					
						
							|  |  |  |    * @tparam VALUE the Value type | 
					
						
							|  |  |  |    * @addtogroup SLAM | 
					
						
							|  |  |  |    */ | 
					
						
							|  |  |  |   template<class VALUE> | 
					
						
							|  |  |  |   class BetweenFactorEM: public NonlinearFactor { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   public: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     typedef VALUE T; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   private: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     typedef BetweenFactorEM<VALUE> This; | 
					
						
							|  |  |  |     typedef gtsam::NonlinearFactor Base; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     gtsam::Key key1_; | 
					
						
							|  |  |  |     gtsam::Key key2_; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     VALUE measured_; /** The measurement */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     SharedGaussian model_inlier_; | 
					
						
							|  |  |  |     SharedGaussian model_outlier_; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     double prior_inlier_; | 
					
						
							|  |  |  |     double prior_outlier_; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-23 23:22:50 +08:00
										 |  |  |     bool flag_bump_up_near_zero_probs_; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  |     /** concept check by type */ | 
					
						
							|  |  |  |     GTSAM_CONCEPT_LIE_TYPE(T) | 
					
						
							|  |  |  |     GTSAM_CONCEPT_TESTABLE_TYPE(T) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   public: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // shorthand for a smart pointer to a factor
 | 
					
						
							|  |  |  |     typedef typename boost::shared_ptr<BetweenFactorEM> shared_ptr; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** default constructor - only use for serialization */ | 
					
						
							|  |  |  |     BetweenFactorEM() {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** Constructor */ | 
					
						
							|  |  |  |     BetweenFactorEM(Key key1, Key key2, const VALUE& measured, | 
					
						
							|  |  |  |         const SharedGaussian& model_inlier, const SharedGaussian& model_outlier, | 
					
						
							| 
									
										
										
										
											2013-08-30 06:42:33 +08:00
										 |  |  |         const double prior_inlier, const double prior_outlier, const bool flag_bump_up_near_zero_probs = false) : | 
					
						
							| 
									
										
										
										
											2013-08-13 05:47:36 +08:00
										 |  |  |           Base(cref_list_of<2>(key1)(key2)), key1_(key1), key2_(key2), measured_(measured), | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  |           model_inlier_(model_inlier), model_outlier_(model_outlier), | 
					
						
							| 
									
										
										
										
											2013-08-30 06:42:33 +08:00
										 |  |  |           prior_inlier_(prior_inlier), prior_outlier_(prior_outlier), flag_bump_up_near_zero_probs_(flag_bump_up_near_zero_probs){ | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     virtual ~BetweenFactorEM() {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** implement functions needed for Testable */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** print */ | 
					
						
							|  |  |  |     virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const { | 
					
						
							| 
									
										
										
										
											2013-08-08 23:12:21 +08:00
										 |  |  |       std::cout << s << "BetweenFactorEM(" | 
					
						
							|  |  |  |           << keyFormatter(key1_) << "," | 
					
						
							|  |  |  |           << keyFormatter(key2_) << ")\n"; | 
					
						
							|  |  |  |       measured_.print("  measured: "); | 
					
						
							|  |  |  |       model_inlier_->print("  noise model inlier: "); | 
					
						
							|  |  |  |       model_outlier_->print("  noise model outlier: "); | 
					
						
							|  |  |  |       std::cout << "(prior_inlier, prior_outlier_) = (" | 
					
						
							|  |  |  |                 << prior_inlier_ << "," | 
					
						
							|  |  |  |                 << prior_outlier_ << ")\n"; | 
					
						
							|  |  |  |       //      Base::print(s, keyFormatter);
 | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** equals */ | 
					
						
							|  |  |  |     virtual bool equals(const NonlinearFactor& f, double tol=1e-9) const { | 
					
						
							|  |  |  |       const This *t =  dynamic_cast<const This*> (&f); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if(t && Base::equals(f)) | 
					
						
							|  |  |  |         return key1_ == t->key1_ && key2_ == t->key2_ && | 
					
						
							|  |  |  |             //            model_inlier_->equals(t->model_inlier_ ) && // TODO: fix here
 | 
					
						
							|  |  |  |             //            model_outlier_->equals(t->model_outlier_ ) &&
 | 
					
						
							|  |  |  |             prior_outlier_ == t->prior_outlier_ && prior_inlier_ == t->prior_inlier_ && measured_.equals(t->measured_); | 
					
						
							|  |  |  |       else | 
					
						
							|  |  |  |         return false; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** implement functions needed to derive from Factor */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     virtual double error(const gtsam::Values& x) const { | 
					
						
							|  |  |  |       return whitenedError(x).squaredNorm(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     /**
 | 
					
						
							|  |  |  |      * Linearize a non-linearFactorN to get a gtsam::GaussianFactor, | 
					
						
							|  |  |  |      * \f$ Ax-b \approx h(x+\delta x)-z = h(x) + A \delta x - z \f$ | 
					
						
							|  |  |  |      * Hence \f$ b = z - h(x) = - \mathtt{error\_vector}(x) \f$ | 
					
						
							|  |  |  |      */ | 
					
						
							|  |  |  |     /* This version of linearize recalculates the noise model each time */ | 
					
						
							| 
									
										
										
										
											2013-08-13 05:47:36 +08:00
										 |  |  |     virtual boost::shared_ptr<gtsam::GaussianFactor> linearize(const gtsam::Values& x) const { | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  |       // Only linearize if the factor is active
 | 
					
						
							|  |  |  |       if (!this->active(x)) | 
					
						
							|  |  |  |         return boost::shared_ptr<gtsam::JacobianFactor>(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       //std::cout<<"About to linearize"<<std::endl;
 | 
					
						
							|  |  |  |       gtsam::Matrix A1, A2; | 
					
						
							|  |  |  |       std::vector<gtsam::Matrix> A(this->size()); | 
					
						
							|  |  |  |       gtsam::Vector b = -whitenedError(x, A); | 
					
						
							|  |  |  |       A1 = A[0]; | 
					
						
							|  |  |  |       A2 = A[1]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       return gtsam::GaussianFactor::shared_ptr( | 
					
						
							| 
									
										
										
										
											2013-08-13 05:47:36 +08:00
										 |  |  |           new gtsam::JacobianFactor(key1_, A1, key2_, A2, b, gtsam::noiseModel::Unit::Create(b.size()))); | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     gtsam::Vector whitenedError(const gtsam::Values& x, | 
					
						
							|  |  |  |         boost::optional<std::vector<gtsam::Matrix>&> H = boost::none) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       bool debug = true; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       const T& p1 = x.at<T>(key1_); | 
					
						
							|  |  |  |       const T& p2 = x.at<T>(key2_); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       Matrix H1, H2; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       T hx = p1.between(p2, H1, H2); // h(x)
 | 
					
						
							|  |  |  |       // manifold equivalent of h(x)-z -> log(z,h(x))
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       Vector err = measured_.localCoordinates(hx); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // Calculate indicator probabilities (inlier and outlier)
 | 
					
						
							| 
									
										
										
										
											2013-08-08 23:12:21 +08:00
										 |  |  |       Vector p_inlier_outlier = calcIndicatorProb(x); | 
					
						
							|  |  |  |       double p_inlier  = p_inlier_outlier[0]; | 
					
						
							|  |  |  |       double p_outlier = p_inlier_outlier[1]; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  |       Vector err_wh_inlier  = model_inlier_->whiten(err); | 
					
						
							|  |  |  |       Vector err_wh_outlier = model_outlier_->whiten(err); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       Matrix invCov_inlier  = model_inlier_->R().transpose() * model_inlier_->R(); | 
					
						
							|  |  |  |       Matrix invCov_outlier = model_outlier_->R().transpose() * model_outlier_->R(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       Vector err_wh_eq; | 
					
						
							|  |  |  |       err_wh_eq.resize(err_wh_inlier.rows()*2); | 
					
						
							| 
									
										
										
										
											2013-08-13 05:47:36 +08:00
										 |  |  |       err_wh_eq << sqrt(p_inlier) * err_wh_inlier.array() , sqrt(p_outlier) * err_wh_outlier.array(); | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |       if (H){ | 
					
						
							|  |  |  |         // stack Jacobians for the two indicators for each of the key
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-13 05:47:36 +08:00
										 |  |  |         Matrix H1_inlier  = sqrt(p_inlier)*model_inlier_->Whiten(H1); | 
					
						
							|  |  |  |         Matrix H1_outlier = sqrt(p_outlier)*model_outlier_->Whiten(H1); | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  |         Matrix H1_aug = gtsam::stack(2, &H1_inlier, &H1_outlier); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-13 05:47:36 +08:00
										 |  |  |         Matrix H2_inlier  = sqrt(p_inlier)*model_inlier_->Whiten(H2); | 
					
						
							|  |  |  |         Matrix H2_outlier = sqrt(p_outlier)*model_outlier_->Whiten(H2); | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  |         Matrix H2_aug = gtsam::stack(2, &H2_inlier, &H2_outlier); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         (*H)[0].resize(H1_aug.rows(),H1_aug.cols()); | 
					
						
							|  |  |  |         (*H)[1].resize(H2_aug.rows(),H2_aug.cols()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         (*H)[0] = H1_aug; | 
					
						
							|  |  |  |         (*H)[1] = H2_aug; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       if (debug){ | 
					
						
							| 
									
										
										
										
											2013-08-08 23:12:21 +08:00
										 |  |  |         //        std::cout<<"unwhitened error: "<<err[0]<<" "<<err[1]<<" "<<err[2]<<std::endl;
 | 
					
						
							|  |  |  |         //        std::cout<<"err_wh_inlier: "<<err_wh_inlier[0]<<" "<<err_wh_inlier[1]<<" "<<err_wh_inlier[2]<<std::endl;
 | 
					
						
							|  |  |  |         //        std::cout<<"err_wh_outlier: "<<err_wh_outlier[0]<<" "<<err_wh_outlier[1]<<" "<<err_wh_outlier[2]<<std::endl;
 | 
					
						
							|  |  |  |         //
 | 
					
						
							|  |  |  |         //        std::cout<<"p_inlier, p_outlier, sumP: "<<p_inlier<<" "<<p_outlier<<" " << sumP << std::endl;
 | 
					
						
							|  |  |  |         //
 | 
					
						
							|  |  |  |         //        std::cout<<"prior_inlier_, prior_outlier_: "<<prior_inlier_<<" "<<prior_outlier_<< std::endl;
 | 
					
						
							|  |  |  |         //
 | 
					
						
							|  |  |  |         //        double s_inl  = -0.5 * err_wh_inlier.dot(err_wh_inlier);
 | 
					
						
							|  |  |  |         //        double s_outl = -0.5 * err_wh_outlier.dot(err_wh_outlier);
 | 
					
						
							|  |  |  |         //        std::cout<<"s_inl, s_outl: "<<s_inl<<" "<<s_outl<<std::endl;
 | 
					
						
							|  |  |  |         //
 | 
					
						
							|  |  |  |         //        std::cout<<"norm of invCov_inlier, invCov_outlier: "<<invCov_inlier.norm()<<" "<<invCov_outlier.norm()<<std::endl;
 | 
					
						
							|  |  |  |         //        double q_inl  = invCov_inlier.norm() * exp( -0.5 * err_wh_inlier.dot(err_wh_inlier) );
 | 
					
						
							|  |  |  |         //        double q_outl = invCov_outlier.norm() * exp( -0.5 * err_wh_outlier.dot(err_wh_outlier) );
 | 
					
						
							|  |  |  |         //        std::cout<<"q_inl, q_outl: "<<q_inl<<" "<<q_outl<<std::endl;
 | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         //        Matrix Cov_inlier  = invCov_inlier.inverse();
 | 
					
						
							|  |  |  |         //        Matrix Cov_outlier = invCov_outlier.inverse();
 | 
					
						
							|  |  |  |         //        std::cout<<"Cov_inlier: "<<std::endl<<
 | 
					
						
							|  |  |  |         //            Cov_inlier(0,0) << " " << Cov_inlier(0,1) << " " << Cov_inlier(0,2) <<std::endl<<
 | 
					
						
							|  |  |  |         //            Cov_inlier(1,0) << " " << Cov_inlier(1,1) << " " << Cov_inlier(1,2) <<std::endl<<
 | 
					
						
							|  |  |  |         //            Cov_inlier(2,0) << " " << Cov_inlier(2,1) << " " << Cov_inlier(2,2) <<std::endl;
 | 
					
						
							|  |  |  |         //        std::cout<<"Cov_outlier: "<<std::endl<<
 | 
					
						
							|  |  |  |         //                    Cov_outlier(0,0) << " " << Cov_outlier(0,1) << " " << Cov_outlier(0,2) <<std::endl<<
 | 
					
						
							|  |  |  |         //                    Cov_outlier(1,0) << " " << Cov_outlier(1,1) << " " << Cov_outlier(1,2) <<std::endl<<
 | 
					
						
							|  |  |  |         //                    Cov_outlier(2,0) << " " << Cov_outlier(2,1) << " " << Cov_outlier(2,2) <<std::endl;
 | 
					
						
							| 
									
										
										
										
											2013-08-08 23:12:21 +08:00
										 |  |  |         //        std::cout<<"===="<<std::endl;
 | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       return err_wh_eq; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2013-08-08 23:12:21 +08:00
										 |  |  |     gtsam::Vector calcIndicatorProb(const gtsam::Values& x) const { | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-23 23:22:50 +08:00
										 |  |  |       bool debug = false; | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-09 04:14:12 +08:00
										 |  |  |       Vector err =  unwhitenedError(x); | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |       // Calculate indicator probabilities (inlier and outlier)
 | 
					
						
							|  |  |  |       Vector err_wh_inlier  = model_inlier_->whiten(err); | 
					
						
							|  |  |  |       Vector err_wh_outlier = model_outlier_->whiten(err); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       Matrix invCov_inlier  = model_inlier_->R().transpose() * model_inlier_->R(); | 
					
						
							|  |  |  |       Matrix invCov_outlier = model_outlier_->R().transpose() * model_outlier_->R(); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-08-02 02:51:52 +08:00
										 |  |  |       double p_inlier  = prior_inlier_ * std::sqrt(invCov_inlier.determinant()) * exp( -0.5 * err_wh_inlier.dot(err_wh_inlier) ); | 
					
						
							|  |  |  |       double p_outlier = prior_outlier_ * std::sqrt(invCov_outlier.determinant()) * exp( -0.5 * err_wh_outlier.dot(err_wh_outlier) ); | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-23 23:22:50 +08:00
										 |  |  |       if (debug){ | 
					
						
							|  |  |  |         std::cout<<"in calcIndicatorProb. err_unwh: "<<err[0]<<", "<<err[1]<<", "<<err[2]<<std::endl; | 
					
						
							|  |  |  |         std::cout<<"in calcIndicatorProb. err_wh_inlier: "<<err_wh_inlier[0]<<", "<<err_wh_inlier[1]<<", "<<err_wh_inlier[2]<<std::endl; | 
					
						
							|  |  |  |         std::cout<<"in calcIndicatorProb. err_wh_inlier.dot(err_wh_inlier): "<<err_wh_inlier.dot(err_wh_inlier)<<std::endl; | 
					
						
							|  |  |  |         std::cout<<"in calcIndicatorProb. err_wh_outlier.dot(err_wh_outlier): "<<err_wh_outlier.dot(err_wh_outlier)<<std::endl; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         std::cout<<"in calcIndicatorProb. p_inlier, p_outlier before normalization: "<<p_inlier<<", "<<p_outlier<<std::endl; | 
					
						
							|  |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  |       double sumP = p_inlier + p_outlier; | 
					
						
							|  |  |  |       p_inlier  /= sumP; | 
					
						
							|  |  |  |       p_outlier /= sumP; | 
					
						
							| 
									
										
										
										
											2013-08-08 23:12:21 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-23 23:22:50 +08:00
										 |  |  |       if (flag_bump_up_near_zero_probs_){ | 
					
						
							|  |  |  |         // Bump up near-zero probabilities (as in linerFlow.h)
 | 
					
						
							|  |  |  |         double minP = 0.05; // == 0.1 / 2 indicator variables
 | 
					
						
							|  |  |  |         if (p_inlier < minP || p_outlier < minP){ | 
					
						
							|  |  |  |           if (p_inlier < minP) | 
					
						
							|  |  |  |             p_inlier = minP; | 
					
						
							|  |  |  |           if (p_outlier < minP) | 
					
						
							|  |  |  |             p_outlier = minP; | 
					
						
							|  |  |  |           sumP = p_inlier + p_outlier; | 
					
						
							|  |  |  |           p_inlier  /= sumP; | 
					
						
							|  |  |  |           p_outlier /= sumP; | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2013-08-08 23:12:21 +08:00
										 |  |  |       } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-01-23 15:03:12 +08:00
										 |  |  |       return (Vector(2) << p_inlier, p_outlier); | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-09 04:14:12 +08:00
										 |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     gtsam::Vector unwhitenedError(const gtsam::Values& x) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       const T& p1 = x.at<T>(key1_); | 
					
						
							|  |  |  |       const T& p2 = x.at<T>(key2_); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       Matrix H1, H2; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       T hx = p1.between(p2, H1, H2); // h(x)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       return measured_.localCoordinates(hx); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-23 23:22:50 +08:00
										 |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     void set_flag_bump_up_near_zero_probs(bool flag) { | 
					
						
							|  |  |  |       flag_bump_up_near_zero_probs_ = flag; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     bool get_flag_bump_up_near_zero_probs() const { | 
					
						
							|  |  |  |       return flag_bump_up_near_zero_probs_; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-07-01 01:43:25 +08:00
										 |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     SharedGaussian get_model_inlier() const { | 
					
						
							|  |  |  |     	return model_inlier_; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     SharedGaussian get_model_outlier() const { | 
					
						
							|  |  |  |     	return model_outlier_; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     Matrix get_model_inlier_cov() const { | 
					
						
							|  |  |  |     	return (model_inlier_->R().transpose()*model_inlier_->R()).inverse(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     Matrix get_model_outlier_cov() const { | 
					
						
							|  |  |  |     	return (model_outlier_->R().transpose()*model_outlier_->R()).inverse(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |     void updateNoiseModels(const gtsam::Values& values, const gtsam::NonlinearFactorGraph& graph){ | 
					
						
							|  |  |  |     	/* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
 | 
					
						
							|  |  |  |     	 * (note these are given in the E step, where indicator probabilities are calculated). | 
					
						
							|  |  |  |     	 * | 
					
						
							|  |  |  |     	 * Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the | 
					
						
							|  |  |  |     	 * unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes). | 
					
						
							|  |  |  |     	 * | 
					
						
							|  |  |  |     	 * TODO: improve efficiency (info form) | 
					
						
							|  |  |  |     	 */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     	 // get joint covariance of the involved states
 | 
					
						
							|  |  |  |     	 std::vector<gtsam::Key> Keys; | 
					
						
							|  |  |  |     	 Keys.push_back(key1_); | 
					
						
							|  |  |  |     	 Keys.push_back(key2_); | 
					
						
							|  |  |  |     	 Marginals marginals( graph, values, Marginals::QR ); | 
					
						
							|  |  |  |     	 JointMarginal joint_marginal12 = marginals.jointMarginalCovariance(Keys); | 
					
						
							|  |  |  |     	 Matrix cov1 = joint_marginal12(key1_, key1_); | 
					
						
							|  |  |  |     	 Matrix cov2 = joint_marginal12(key2_, key2_); | 
					
						
							|  |  |  |     	 Matrix cov12 = joint_marginal12(key1_, key2_); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-07-31 21:22:54 +08:00
										 |  |  |     	 updateNoiseModels_givenCovs(values, cov1, cov2, cov12); | 
					
						
							|  |  |  |     } | 
					
						
							| 
									
										
										
										
											2014-07-01 01:43:25 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-07-31 21:22:54 +08:00
										 |  |  |     /* ************************************************************************* */ | 
					
						
							|  |  |  |         void updateNoiseModels_givenCovs(const gtsam::Values& values, const Matrix& cov1, const Matrix& cov2, const Matrix& cov12){ | 
					
						
							|  |  |  |         	/* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
 | 
					
						
							|  |  |  |         	 * (note these are given in the E step, where indicator probabilities are calculated). | 
					
						
							|  |  |  |         	 * | 
					
						
							|  |  |  |         	 * Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the | 
					
						
							|  |  |  |         	 * unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes). | 
					
						
							|  |  |  |         	 * | 
					
						
							|  |  |  |         	 * TODO: improve efficiency (info form) | 
					
						
							|  |  |  |         	 */ | 
					
						
							| 
									
										
										
										
											2014-07-01 01:43:25 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-07-31 21:22:54 +08:00
										 |  |  |         	 const T& p1 = values.at<T>(key1_); | 
					
						
							|  |  |  |         	 const T& p2 = values.at<T>(key2_); | 
					
						
							| 
									
										
										
										
											2014-07-01 01:43:25 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-07-31 21:22:54 +08:00
										 |  |  |         	 Matrix H1, H2; | 
					
						
							|  |  |  |         	 T hx = p1.between(p2, H1, H2); // h(x)
 | 
					
						
							| 
									
										
										
										
											2014-07-01 01:43:25 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-07-31 21:22:54 +08:00
										 |  |  |         	 Matrix H; | 
					
						
							|  |  |  |         	 H.resize(H1.rows(), H1.rows()+H2.rows()); | 
					
						
							|  |  |  |         	 H << H1, H2; // H = [H1 H2]
 | 
					
						
							| 
									
										
										
										
											2014-07-01 01:43:25 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-07-31 21:22:54 +08:00
										 |  |  |         	 Matrix joint_cov; | 
					
						
							|  |  |  |         	 joint_cov.resize(cov1.rows()+cov2.rows(), cov1.cols()+cov2.cols()); | 
					
						
							|  |  |  |         	 joint_cov << cov1, cov12, | 
					
						
							|  |  |  |         			 cov12.transpose(), cov2; | 
					
						
							| 
									
										
										
										
											2014-07-01 01:43:25 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2014-07-31 21:22:54 +08:00
										 |  |  |         	 Matrix cov_state = H*joint_cov*H.transpose(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         	 //    	 model_inlier_->print("before:");
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         	 // update inlier and outlier noise models
 | 
					
						
							|  |  |  |         	 Matrix covRinlier = (model_inlier_->R().transpose()*model_inlier_->R()).inverse(); | 
					
						
							|  |  |  |         	 model_inlier_ = gtsam::noiseModel::Gaussian::Covariance(covRinlier + cov_state); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         	 Matrix covRoutlier = (model_outlier_->R().transpose()*model_outlier_->R()).inverse(); | 
					
						
							|  |  |  |         	 model_outlier_ = gtsam::noiseModel::Gaussian::Covariance(covRoutlier + cov_state); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         	 //    	 model_inlier_->print("after:");
 | 
					
						
							|  |  |  |         	 //    	 std::cout<<"covRinlier + cov_state: "<<covRinlier + cov_state<<std::endl;
 | 
					
						
							|  |  |  |         } | 
					
						
							| 
									
										
										
										
											2014-07-01 01:43:25 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2013-08-09 04:14:12 +08:00
										 |  |  |     /* ************************************************************************* */ | 
					
						
							| 
									
										
										
										
											2013-08-07 23:25:00 +08:00
										 |  |  |     /** return the measured */ | 
					
						
							|  |  |  |     const VALUE& measured() const { | 
					
						
							|  |  |  |       return measured_; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** number of variables attached to this factor */ | 
					
						
							|  |  |  |     std::size_t size() const { | 
					
						
							|  |  |  |       return 2; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     virtual size_t dim() const { | 
					
						
							|  |  |  |       return model_inlier_->R().rows() + model_inlier_->R().cols(); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   private: | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     /** Serialization function */ | 
					
						
							|  |  |  |     friend class boost::serialization::access; | 
					
						
							|  |  |  |     template<class ARCHIVE> | 
					
						
							|  |  |  |     void serialize(ARCHIVE & ar, const unsigned int version) { | 
					
						
							|  |  |  |       ar & boost::serialization::make_nvp("NonlinearFactor", | 
					
						
							|  |  |  |           boost::serialization::base_object<Base>(*this)); | 
					
						
							|  |  |  |       ar & BOOST_SERIALIZATION_NVP(measured_); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   }; // \class BetweenFactorEM
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | } /// namespace gtsam
 |