664 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
		
		
			
		
	
	
			664 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
|  | /* ----------------------------------------------------------------------------
 | ||
|  |   | ||
|  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||
|  |  * Atlanta, Georgia 30332-0415 | ||
|  |  * All Rights Reserved | ||
|  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  |   | ||
|  |  * See LICENSE for the license information | ||
|  |   | ||
|  |  * -------------------------------------------------------------------------- */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @file   SmartProjectionFactor.h | ||
|  |  * @brief  Base class to create smart factors on poses or cameras | ||
|  |  * @author Luca Carlone | ||
|  |  * @author Zsolt Kira | ||
|  |  * @author Frank Dellaert | ||
|  |  */ | ||
|  | 
 | ||
|  | #pragma once
 | ||
|  | 
 | ||
|  | #include "SmartFactorBase.h"
 | ||
|  | 
 | ||
|  | #include <gtsam_unstable/geometry/triangulation.h>
 | ||
|  | #include <gtsam/geometry/Pose3.h>
 | ||
|  | #include <gtsam/inference/Symbol.h>
 | ||
|  | #include <gtsam/slam/dataset.h>
 | ||
|  | #include <gtsam_unstable/geometry/triangulation.h>
 | ||
|  | 
 | ||
|  | #include <boost/optional.hpp>
 | ||
|  | #include <boost/make_shared.hpp>
 | ||
|  | #include <vector>
 | ||
|  | 
 | ||
|  | namespace gtsam { | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * Structure for storing some state memory, used to speed up optimization | ||
|  |  * @addtogroup SLAM | ||
|  |  */ | ||
|  | class SmartProjectionFactorState { | ||
|  | 
 | ||
|  | protected: | ||
|  | 
 | ||
|  | public: | ||
|  | 
 | ||
|  |   SmartProjectionFactorState() { | ||
|  |   } | ||
|  |   // Hessian representation (after Schur complement)
 | ||
|  |   bool calculatedHessian; | ||
|  |   Matrix H; | ||
|  |   Vector gs_vector; | ||
|  |   std::vector<Matrix> Gs; | ||
|  |   std::vector<Vector> gs; | ||
|  |   double f; | ||
|  | }; | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * SmartProjectionFactor: triangulates point | ||
|  |  * TODO: why LANDMARK parameter? | ||
|  |  */ | ||
|  | template<class POSE, class LANDMARK, class CALIBRATION, size_t D> | ||
|  | class SmartProjectionFactor: public SmartFactorBase<POSE, CALIBRATION, D> { | ||
|  | protected: | ||
|  | 
 | ||
|  |   // Some triangulation parameters
 | ||
|  |   const double rankTolerance_; ///< threshold to decide whether triangulation is degenerate_
 | ||
|  |   const double retriangulationThreshold_; ///< threshold to decide whether to re-triangulate
 | ||
|  |   mutable std::vector<Pose3> cameraPosesTriangulation_; ///< current triangulation poses
 | ||
|  | 
 | ||
|  |   const bool manageDegeneracy_; ///< if set to true will use the rotation-only version for degenerate cases
 | ||
|  | 
 | ||
|  |   const bool enableEPI_; ///< if set to true, will refine triangulation using LM
 | ||
|  | 
 | ||
|  |   const double linearizationThreshold_; ///< threshold to decide whether to re-linearize
 | ||
|  |   mutable std::vector<Pose3> cameraPosesLinearization_; ///< current linearization poses
 | ||
|  | 
 | ||
|  |   mutable Point3 point_; ///< Current estimate of the 3D point
 | ||
|  | 
 | ||
|  |   mutable bool degenerate_; | ||
|  |   mutable bool cheiralityException_; | ||
|  | 
 | ||
|  |   // verbosity handling for Cheirality Exceptions
 | ||
|  |   const bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
 | ||
|  |   const bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
 | ||
|  | 
 | ||
|  |   boost::shared_ptr<SmartProjectionFactorState> state_; | ||
|  | 
 | ||
|  |   /// shorthand for smart projection factor state variable
 | ||
|  |   typedef boost::shared_ptr<SmartProjectionFactorState> SmartFactorStatePtr; | ||
|  | 
 | ||
|  |   /// shorthand for base class type
 | ||
|  |   typedef SmartFactorBase<POSE, CALIBRATION, D> Base; | ||
|  | 
 | ||
|  |   /// shorthand for this class
 | ||
|  |   typedef SmartProjectionFactor<POSE, LANDMARK, CALIBRATION, D> This; | ||
|  | 
 | ||
|  | public: | ||
|  | 
 | ||
|  |   /// shorthand for a smart pointer to a factor
 | ||
|  |   typedef boost::shared_ptr<This> shared_ptr; | ||
|  | 
 | ||
|  |   /// shorthand for a pinhole camera
 | ||
|  |   typedef PinholeCamera<CALIBRATION> Camera; | ||
|  |   typedef std::vector<Camera> Cameras; | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * Constructor | ||
|  |    * @param rankTol tolerance used to check if point triangulation is degenerate | ||
|  |    * @param linThreshold threshold on relative pose changes used to decide whether to relinearize (selective relinearization) | ||
|  |    * @param manageDegeneracy is true, in presence of degenerate triangulation, the factor is converted to a rotation-only constraint, | ||
|  |    * otherwise the factor is simply neglected | ||
|  |    * @param enableEPI if set to true linear triangulation is refined with embedded LM iterations | ||
|  |    * @param body_P_sensor is the transform from body to sensor frame (default identity) | ||
|  |    */ | ||
|  |   SmartProjectionFactor(const double rankTol, const double linThreshold, | ||
|  |       const bool manageDegeneracy, const bool enableEPI, | ||
|  |       boost::optional<POSE> body_P_sensor = boost::none, | ||
|  |       SmartFactorStatePtr state = SmartFactorStatePtr( | ||
|  |           new SmartProjectionFactorState())) : | ||
|  |       Base(body_P_sensor), rankTolerance_(rankTol), retriangulationThreshold_( | ||
|  |           1e-5), manageDegeneracy_(manageDegeneracy), enableEPI_(enableEPI), linearizationThreshold_( | ||
|  |           linThreshold), degenerate_(false), cheiralityException_(false), throwCheirality_( | ||
|  |           false), verboseCheirality_(false), state_(state) { | ||
|  |   } | ||
|  | 
 | ||
|  |   /** Virtual destructor */ | ||
|  |   virtual ~SmartProjectionFactor() { | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * print | ||
|  |    * @param s optional string naming the factor | ||
|  |    * @param keyFormatter optional formatter useful for printing Symbols | ||
|  |    */ | ||
|  |   void print(const std::string& s = "", const KeyFormatter& keyFormatter = | ||
|  |       DefaultKeyFormatter) const { | ||
|  |     std::cout << s << "SmartProjectionFactor, z = \n"; | ||
|  |     std::cout << "rankTolerance_ = " << rankTolerance_ << std::endl; | ||
|  |     std::cout << "degenerate_ = " << degenerate_ << std::endl; | ||
|  |     std::cout << "cheiralityException_ = " << cheiralityException_ << std::endl; | ||
|  |     Base::print("", keyFormatter); | ||
|  |   } | ||
|  | 
 | ||
|  |   /// Check if the new linearization point_ is the same as the one used for previous triangulation
 | ||
|  |   bool decideIfTriangulate(const Cameras& cameras) const { | ||
|  |     // several calls to linearize will be done from the same linearization point_, hence it is not needed to re-triangulate
 | ||
|  |     // Note that this is not yet "selecting linearization", that will come later, and we only check if the
 | ||
|  |     // current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point_
 | ||
|  | 
 | ||
|  |     size_t m = cameras.size(); | ||
|  | 
 | ||
|  |     bool retriangulate = false; | ||
|  | 
 | ||
|  |     // if we do not have a previous linearization point_ or the new linearization point_ includes more poses
 | ||
|  |     if (cameraPosesTriangulation_.empty() | ||
|  |         || cameras.size() != cameraPosesTriangulation_.size()) | ||
|  |       retriangulate = true; | ||
|  | 
 | ||
|  |     if (!retriangulate) { | ||
|  |       for (size_t i = 0; i < cameras.size(); i++) { | ||
|  |         if (!cameras[i].pose().equals(cameraPosesTriangulation_[i], | ||
|  |             retriangulationThreshold_)) { | ||
|  |           retriangulate = true; // at least two poses are different, hence we retriangulate
 | ||
|  |           break; | ||
|  |         } | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     if (retriangulate) { // we store the current poses used for triangulation
 | ||
|  |       cameraPosesTriangulation_.clear(); | ||
|  |       cameraPosesTriangulation_.reserve(m); | ||
|  |       for (size_t i = 0; i < m; i++) | ||
|  |         // cameraPosesTriangulation_[i] = cameras[i].pose();
 | ||
|  |         cameraPosesTriangulation_.push_back(cameras[i].pose()); | ||
|  |     } | ||
|  | 
 | ||
|  |     return retriangulate; // if we arrive to this point_ all poses are the same and we don't need re-triangulation
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /// This function checks if the new linearization point_ is 'close'  to the previous one used for linearization
 | ||
|  |   bool decideIfLinearize(const Cameras& cameras) const { | ||
|  |     // "selective linearization"
 | ||
|  |     // The function evaluates how close are the old and the new poses, transformed in the ref frame of the first pose
 | ||
|  |     // (we only care about the "rigidity" of the poses, not about their absolute pose)
 | ||
|  | 
 | ||
|  |     if (this->linearizationThreshold_ < 0) //by convention if linearizationThreshold is negative we always relinearize
 | ||
|  |       return true; | ||
|  | 
 | ||
|  |     // if we do not have a previous linearization point_ or the new linearization point_ includes more poses
 | ||
|  |     if (cameraPosesLinearization_.empty() | ||
|  |         || (cameras.size() != cameraPosesLinearization_.size())) | ||
|  |       return true; | ||
|  | 
 | ||
|  |     Pose3 firstCameraPose, firstCameraPoseOld; | ||
|  |     for (size_t i = 0; i < cameras.size(); i++) { | ||
|  | 
 | ||
|  |       if (i == 0) { // we store the initial pose, this is useful for selective re-linearization
 | ||
|  |         firstCameraPose = cameras[i].pose(); | ||
|  |         firstCameraPoseOld = cameraPosesLinearization_[i]; | ||
|  |         continue; | ||
|  |       } | ||
|  | 
 | ||
|  |       // we compare the poses in the frame of the first pose
 | ||
|  |       Pose3 localCameraPose = firstCameraPose.between(cameras[i].pose()); | ||
|  |       Pose3 localCameraPoseOld = firstCameraPoseOld.between( | ||
|  |           cameraPosesLinearization_[i]); | ||
|  |       if (!localCameraPose.equals(localCameraPoseOld, | ||
|  |           this->linearizationThreshold_)) | ||
|  |         return true; // at least two "relative" poses are different, hence we re-linearize
 | ||
|  |     } | ||
|  |     return false; // if we arrive to this point_ all poses are the same and we don't need re-linearize
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /// triangulateSafe
 | ||
|  |   size_t triangulateSafe(const Values& values) const { | ||
|  |     return triangulateSafe(this->cameras(values)); | ||
|  |   } | ||
|  | 
 | ||
|  |   /// triangulateSafe
 | ||
|  |   size_t triangulateSafe(const Cameras& cameras) const { | ||
|  | 
 | ||
|  |     size_t m = cameras.size(); | ||
|  |     if (m < 2) { // if we have a single pose the corresponding factor is uninformative
 | ||
|  |       degenerate_ = true; | ||
|  |       return m; | ||
|  |     } | ||
|  |     bool retriangulate = decideIfTriangulate(cameras); | ||
|  | 
 | ||
|  |     if (retriangulate) { | ||
|  |       // We triangulate the 3D position of the landmark
 | ||
|  |       try { | ||
|  |         // std::cout << "triangulatePoint3 i \n" << rankTolerance << std::endl;
 | ||
|  |         point_ = triangulatePoint3<CALIBRATION>(cameras, this->measured_, | ||
|  |             rankTolerance_, enableEPI_); | ||
|  |         degenerate_ = false; | ||
|  |         cheiralityException_ = false; | ||
|  |       } catch (TriangulationUnderconstrainedException& e) { | ||
|  |         // if TriangulationUnderconstrainedException can be
 | ||
|  |         // 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before
 | ||
|  |         // 2) The rank of the matrix used for triangulation is < 3: rotation-only, parallel cameras (or motion towards the landmark)
 | ||
|  |         // in the second case we want to use a rotation-only smart factor
 | ||
|  |         degenerate_ = true; | ||
|  |         cheiralityException_ = false; | ||
|  |       } catch (TriangulationCheiralityException& e) { | ||
|  |         // point is behind one of the cameras: can be the case of close-to-parallel cameras or may depend on outliers
 | ||
|  |         // we manage this case by either discarding the smart factor, or imposing a rotation-only constraint
 | ||
|  |         cheiralityException_ = true; | ||
|  |       } | ||
|  |     } | ||
|  |     return m; | ||
|  |   } | ||
|  | 
 | ||
|  |   /// triangulate
 | ||
|  |   bool triangulateForLinearize(const Cameras& cameras) const { | ||
|  | 
 | ||
|  |     bool isDebug = false; | ||
|  |     size_t nrCameras = this->triangulateSafe(cameras); | ||
|  | 
 | ||
|  |     if (nrCameras < 2 | ||
|  |         || (!this->manageDegeneracy_ | ||
|  |             && (this->cheiralityException_ || this->degenerate_))) { | ||
|  |       if (isDebug) { | ||
|  |         std::cout << "createImplicitSchurFactor: degenerate configuration" | ||
|  |             << std::endl; | ||
|  |       } | ||
|  |       return false; | ||
|  |     } else { | ||
|  | 
 | ||
|  |       // instead, if we want to manage the exception..
 | ||
|  |       if (this->cheiralityException_ || this->degenerate_) { // if we want to manage the exceptions with rotation-only factors
 | ||
|  |         this->degenerate_ = true; | ||
|  |       } | ||
|  |       return true; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /// linearize returns a Hessianfactor that is an approximation of error(p)
 | ||
|  |   boost::shared_ptr<RegularHessianFactor<D> > createHessianFactor( | ||
|  |       const Cameras& cameras, const double lambda = 0.0) const { | ||
|  | 
 | ||
|  |     bool isDebug = false; | ||
|  |     int numKeys = this->keys_.size(); | ||
|  |     // Create structures for Hessian Factors
 | ||
|  |     std::vector < Key > js; | ||
|  |     std::vector < Matrix > Gs(numKeys * (numKeys + 1) / 2); | ||
|  |     std::vector < Vector > gs(numKeys); | ||
|  | 
 | ||
|  |     if (this->measured_.size() != cameras.size()) { | ||
|  |       std::cout | ||
|  |           << "SmartProjectionHessianFactor: this->measured_.size() inconsistent with input" | ||
|  |           << std::endl; | ||
|  |       exit(1); | ||
|  |     } | ||
|  | 
 | ||
|  |     this->triangulateSafe(cameras); | ||
|  | 
 | ||
|  |     if (numKeys < 2 | ||
|  |         || (!this->manageDegeneracy_ | ||
|  |             && (this->cheiralityException_ || this->degenerate_))) { | ||
|  |       // std::cout << "In linearize: exception" << std::endl;
 | ||
|  |       BOOST_FOREACH(gtsam::Matrix& m, Gs) | ||
|  |         m = zeros(D, D); | ||
|  |       BOOST_FOREACH(Vector& v, gs) | ||
|  |         v = zero(D); | ||
|  |       return boost::make_shared<RegularHessianFactor<D> >(this->keys_, Gs, gs, | ||
|  |           0.0); | ||
|  |     } | ||
|  | 
 | ||
|  |     // instead, if we want to manage the exception..
 | ||
|  |     if (this->cheiralityException_ || this->degenerate_) { // if we want to manage the exceptions with rotation-only factors
 | ||
|  |       this->degenerate_ = true; | ||
|  |     } | ||
|  | 
 | ||
|  |     bool doLinearize = this->decideIfLinearize(cameras); | ||
|  | 
 | ||
|  |     if (this->linearizationThreshold_ >= 0 && doLinearize) // if we apply selective relinearization and we need to relinearize
 | ||
|  |       for (size_t i = 0; i < cameras.size(); i++) | ||
|  |         this->cameraPosesLinearization_[i] = cameras[i].pose(); | ||
|  | 
 | ||
|  |     if (!doLinearize) { // return the previous Hessian factor
 | ||
|  |       std::cout << "=============================" << std::endl; | ||
|  |       std::cout << "doLinearize " << doLinearize << std::endl; | ||
|  |       std::cout << "this->linearizationThreshold_ " | ||
|  |           << this->linearizationThreshold_ << std::endl; | ||
|  |       std::cout << "this->degenerate_ " << this->degenerate_ << std::endl; | ||
|  |       std::cout | ||
|  |           << "something wrong in SmartProjectionHessianFactor: selective relinearization should be disabled" | ||
|  |           << std::endl; | ||
|  |       exit(1); | ||
|  |       return boost::make_shared<RegularHessianFactor<D> >(this->keys_, | ||
|  |           this->state_->Gs, this->state_->gs, this->state_->f); | ||
|  |     } | ||
|  | 
 | ||
|  |     // ==================================================================
 | ||
|  |     Matrix F, E; | ||
|  |     Matrix3 PointCov; | ||
|  |     Vector b; | ||
|  |     double f = computeJacobians(F, E, PointCov, b, cameras, lambda); | ||
|  | 
 | ||
|  |     // Schur complement trick
 | ||
|  |     // Frank says: should be possible to do this more efficiently?
 | ||
|  |     // And we care, as in grouped factors this is called repeatedly
 | ||
|  |     Matrix H(D * numKeys, D * numKeys); | ||
|  |     Vector gs_vector; | ||
|  | 
 | ||
|  |     H.noalias() = F.transpose() * (F - (E * (PointCov * (E.transpose() * F)))); | ||
|  |     gs_vector.noalias() = F.transpose() | ||
|  |         * (b - (E * (PointCov * (E.transpose() * b)))); | ||
|  |     if (isDebug) | ||
|  |       std::cout << "gs_vector size " << gs_vector.size() << std::endl; | ||
|  | 
 | ||
|  |     // Populate Gs and gs
 | ||
|  |     int GsCount2 = 0; | ||
|  |     for (DenseIndex i1 = 0; i1 < numKeys; i1++) { // for each camera
 | ||
|  |       DenseIndex i1D = i1 * D; | ||
|  |       gs.at(i1) = gs_vector.segment < D > (i1D); | ||
|  |       for (DenseIndex i2 = 0; i2 < numKeys; i2++) { | ||
|  |         if (i2 >= i1) { | ||
|  |           Gs.at(GsCount2) = H.block < D, D > (i1D, i2 * D); | ||
|  |           GsCount2++; | ||
|  |         } | ||
|  |       } | ||
|  |     } | ||
|  |     // ==================================================================
 | ||
|  |     if (this->linearizationThreshold_ >= 0) { // if we do not use selective relinearization we don't need to store these variables
 | ||
|  |       this->state_->Gs = Gs; | ||
|  |       this->state_->gs = gs; | ||
|  |       this->state_->f = f; | ||
|  |     } | ||
|  |     return boost::make_shared<RegularHessianFactor<D> >(this->keys_, Gs, gs, f); | ||
|  |   } | ||
|  | 
 | ||
|  |   // create factor
 | ||
|  |   boost::shared_ptr<ImplicitSchurFactor<D> > createImplicitSchurFactor( | ||
|  |       const Cameras& cameras, double lambda) const { | ||
|  |     if (triangulateForLinearize(cameras)) | ||
|  |       return Base::createImplicitSchurFactor(cameras, point_, lambda); | ||
|  |     else | ||
|  |       return boost::shared_ptr<ImplicitSchurFactor<D> >(); | ||
|  |   } | ||
|  | 
 | ||
|  |   /// create factor
 | ||
|  |   boost::shared_ptr<JacobianFactorQ<D> > createJacobianQFactor( | ||
|  |       const Cameras& cameras, double lambda) const { | ||
|  |     if (triangulateForLinearize(cameras)) | ||
|  |       return Base::createJacobianQFactor(cameras, point_, lambda); | ||
|  |     else | ||
|  |       return boost::shared_ptr<JacobianFactorQ<D> >(); | ||
|  |   } | ||
|  | 
 | ||
|  |   /// Create a factor, takes values
 | ||
|  |   boost::shared_ptr<JacobianFactorQ<D> > createJacobianQFactor( | ||
|  |       const Values& values, double lambda) const { | ||
|  |     Cameras myCameras; | ||
|  |     // TODO triangulate twice ??
 | ||
|  |     bool nonDegenerate = computeCamerasAndTriangulate(values, myCameras); | ||
|  |     if (nonDegenerate) | ||
|  |       return createJacobianQFactor(myCameras, lambda); | ||
|  |     else | ||
|  |       return boost::shared_ptr<JacobianFactorQ<D> >(); | ||
|  |   } | ||
|  | 
 | ||
|  |   /// Returns true if nonDegenerate
 | ||
|  |   bool computeCamerasAndTriangulate(const Values& values, | ||
|  |       Cameras& myCameras) const { | ||
|  |     Values valuesFactor; | ||
|  | 
 | ||
|  |     // Select only the cameras
 | ||
|  |     BOOST_FOREACH(const Key key, this->keys_) | ||
|  |       valuesFactor.insert(key, values.at(key)); | ||
|  | 
 | ||
|  |     myCameras = this->cameras(valuesFactor); | ||
|  |     size_t nrCameras = this->triangulateSafe(myCameras); | ||
|  | 
 | ||
|  |     if (nrCameras < 2 | ||
|  |         || (!this->manageDegeneracy_ | ||
|  |             && (this->cheiralityException_ || this->degenerate_))) | ||
|  |       return false; | ||
|  | 
 | ||
|  |     // instead, if we want to manage the exception..
 | ||
|  |     if (this->cheiralityException_ || this->degenerate_) // if we want to manage the exceptions with rotation-only factors
 | ||
|  |       this->degenerate_ = true; | ||
|  | 
 | ||
|  |     if (this->degenerate_) { | ||
|  |       std::cout << "SmartProjectionFactor: this is not ready" << std::endl; | ||
|  |       std::cout << "this->cheiralityException_ " << this->cheiralityException_ | ||
|  |           << std::endl; | ||
|  |       std::cout << "this->degenerate_ " << this->degenerate_ << std::endl; | ||
|  |     } | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   /// Takes values
 | ||
|  |   bool computeEP(Matrix& E, Matrix& PointCov, const Values& values) const { | ||
|  |     Cameras myCameras; | ||
|  |     bool nonDegenerate = computeCamerasAndTriangulate(values, myCameras); | ||
|  |     if (nonDegenerate) | ||
|  |       computeEP(E, PointCov, myCameras); | ||
|  |     return nonDegenerate; | ||
|  |   } | ||
|  | 
 | ||
|  |   /// Assumes non-degenerate !
 | ||
|  |   void computeEP(Matrix& E, Matrix& PointCov, const Cameras& cameras) const { | ||
|  |     return Base::computeEP(E, PointCov, cameras, point_); | ||
|  |   } | ||
|  | 
 | ||
|  |   /// Version that takes values, and creates the point
 | ||
|  |   bool computeJacobians(std::vector<typename Base::KeyMatrix2D>& Fblocks, | ||
|  |       Matrix& E, Matrix& PointCov, Vector& b, const Values& values) const { | ||
|  |     Cameras myCameras; | ||
|  |     bool nonDegenerate = computeCamerasAndTriangulate(values, myCameras); | ||
|  |     if (nonDegenerate) | ||
|  |       computeJacobians(Fblocks, E, PointCov, b, myCameras, 0.0); | ||
|  |     return nonDegenerate; | ||
|  |   } | ||
|  | 
 | ||
|  |   /// Compute F, E only (called below in both vanilla and SVD versions)
 | ||
|  |   /// Assumes the point has been computed
 | ||
|  |   /// Note E can be 2m*3 or 2m*2, in case point is degenerate
 | ||
|  |   double computeJacobians(std::vector<typename Base::KeyMatrix2D>& Fblocks, | ||
|  |       Matrix& E, Vector& b, const Cameras& cameras) const { | ||
|  | 
 | ||
|  |     if (this->degenerate_) { | ||
|  |       std::cout << "manage degeneracy " << manageDegeneracy_ << std::endl; | ||
|  |       std::cout << "point " << point_ << std::endl; | ||
|  |       std::cout | ||
|  |           << "SmartProjectionFactor: Management of degeneracy is disabled - not ready to be used" | ||
|  |           << std::endl; | ||
|  |       if (D > 6) { | ||
|  |         std::cout | ||
|  |             << "Management of degeneracy is not yet ready when one also optimizes for the calibration " | ||
|  |             << std::endl; | ||
|  |       } | ||
|  | 
 | ||
|  |       int numKeys = this->keys_.size(); | ||
|  |       E = zeros(2 * numKeys, 2); | ||
|  |       b = zero(2 * numKeys); | ||
|  |       double f = 0; | ||
|  |       for (size_t i = 0; i < this->measured_.size(); i++) { | ||
|  |         if (i == 0) { // first pose
 | ||
|  |           this->point_ = cameras[i].backprojectPointAtInfinity( | ||
|  |               this->measured_.at(i)); | ||
|  |           // 3D parametrization of point at infinity: [px py 1]
 | ||
|  |         } | ||
|  |         Matrix Fi, Ei; | ||
|  |         Vector bi = -(cameras[i].projectPointAtInfinity(this->point_, Fi, Ei) | ||
|  |             - this->measured_.at(i)).vector(); | ||
|  | 
 | ||
|  |         this->noise_.at(i)->WhitenSystem(Fi, Ei, bi); | ||
|  |         f += bi.squaredNorm(); | ||
|  |         Fblocks.push_back(typename Base::KeyMatrix2D(this->keys_[i], Fi)); | ||
|  |         E.block < 2, 2 > (2 * i, 0) = Ei; | ||
|  |         subInsert(b, bi, 2 * i); | ||
|  |       } | ||
|  |       return f; | ||
|  |     } else { | ||
|  |       // nondegenerate: just return Base version
 | ||
|  |       return Base::computeJacobians(Fblocks, E, b, cameras, point_); | ||
|  |     } // end else
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /// Version that computes PointCov, with optional lambda parameter
 | ||
|  |   double computeJacobians(std::vector<typename Base::KeyMatrix2D>& Fblocks, | ||
|  |       Matrix& E, Matrix& PointCov, Vector& b, const Cameras& cameras, | ||
|  |       const double lambda = 0.0) const { | ||
|  | 
 | ||
|  |     double f = computeJacobians(Fblocks, E, b, cameras); | ||
|  | 
 | ||
|  |     // Point covariance inv(E'*E)
 | ||
|  |     PointCov.noalias() = (E.transpose() * E + lambda * eye(E.cols())).inverse(); | ||
|  | 
 | ||
|  |     return f; | ||
|  |   } | ||
|  | 
 | ||
|  |   /// takes values
 | ||
|  |   bool computeJacobiansSVD(std::vector<typename Base::KeyMatrix2D>& Fblocks, | ||
|  |       Matrix& Enull, Vector& b, const Values& values) const { | ||
|  |     typename Base::Cameras myCameras; | ||
|  |     double good = computeCamerasAndTriangulate(values, myCameras); | ||
|  |     if (good) | ||
|  |       computeJacobiansSVD(Fblocks, Enull, b, myCameras); | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   /// SVD version
 | ||
|  |   double computeJacobiansSVD(std::vector<typename Base::KeyMatrix2D>& Fblocks, | ||
|  |       Matrix& Enull, Vector& b, const Cameras& cameras) const { | ||
|  |     return Base::computeJacobiansSVD(Fblocks, Enull, b, cameras, point_); | ||
|  |   } | ||
|  | 
 | ||
|  |   /// Returns Matrix, TODO: maybe should not exist -> not sparse !
 | ||
|  |   // TODO should there be a lambda?
 | ||
|  |   double computeJacobiansSVD(Matrix& F, Matrix& Enull, Vector& b, | ||
|  |       const Cameras& cameras) const { | ||
|  |     return Base::computeJacobiansSVD(F, Enull, b, cameras, point_); | ||
|  |   } | ||
|  | 
 | ||
|  |   /// Returns Matrix, TODO: maybe should not exist -> not sparse !
 | ||
|  |   double computeJacobians(Matrix& F, Matrix& E, Matrix3& PointCov, Vector& b, | ||
|  |       const Cameras& cameras, const double lambda) const { | ||
|  |     return Base::computeJacobians(F, E, PointCov, b, cameras, point_, lambda); | ||
|  |   } | ||
|  | 
 | ||
|  |   /// Calculate vector of re-projection errors, before applying noise model
 | ||
|  |   /// Assumes triangulation was done and degeneracy handled
 | ||
|  |   Vector reprojectionError(const Cameras& cameras) const { | ||
|  |     return Base::reprojectionError(cameras, point_); | ||
|  |   } | ||
|  | 
 | ||
|  |   /// Calculate vector of re-projection errors, before applying noise model
 | ||
|  |   Vector reprojectionError(const Values& values) const { | ||
|  |     Cameras myCameras; | ||
|  |     bool nonDegenerate = computeCamerasAndTriangulate(values, myCameras); | ||
|  |     if (nonDegenerate) | ||
|  |       return reprojectionError(myCameras); | ||
|  |     else | ||
|  |       return zero(myCameras.size() * 2); | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |    * Calculate the error of the factor. | ||
|  |    * This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian. | ||
|  |    * In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model | ||
|  |    * to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5. | ||
|  |    */ | ||
|  |   double totalReprojectionError(const Cameras& cameras, | ||
|  |       boost::optional<Point3> externalPoint = boost::none) const { | ||
|  | 
 | ||
|  |     size_t nrCameras; | ||
|  |     if (externalPoint) { | ||
|  |       nrCameras = this->keys_.size(); | ||
|  |       point_ = *externalPoint; | ||
|  |       degenerate_ = false; | ||
|  |       cheiralityException_ = false; | ||
|  |     } else { | ||
|  |       nrCameras = this->triangulateSafe(cameras); | ||
|  |     } | ||
|  | 
 | ||
|  |     if (nrCameras < 2 | ||
|  |         || (!this->manageDegeneracy_ | ||
|  |             && (this->cheiralityException_ || this->degenerate_))) { | ||
|  |       // if we don't want to manage the exceptions we discard the factor
 | ||
|  |       // std::cout << "In error evaluation: exception" << std::endl;
 | ||
|  |       return 0.0; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (this->cheiralityException_) { // if we want to manage the exceptions with rotation-only factors
 | ||
|  |       std::cout | ||
|  |           << "SmartProjectionHessianFactor: cheirality exception (this should not happen if CheiralityException is disabled)!" | ||
|  |           << std::endl; | ||
|  |       this->degenerate_ = true; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (this->degenerate_) { | ||
|  |       // return 0.0; // TODO: this maybe should be zero?
 | ||
|  |       std::cout | ||
|  |           << "SmartProjectionHessianFactor: trying to manage degeneracy (this should not happen is manageDegeneracy is disabled)!" | ||
|  |           << std::endl; | ||
|  |       size_t i = 0; | ||
|  |       double overallError = 0; | ||
|  |       BOOST_FOREACH(const Camera& camera, cameras) { | ||
|  |         const Point2& zi = this->measured_.at(i); | ||
|  |         if (i == 0) // first pose
 | ||
|  |           this->point_ = camera.backprojectPointAtInfinity(zi); // 3D parametrization of point at infinity
 | ||
|  |         Point2 reprojectionError( | ||
|  |             camera.projectPointAtInfinity(this->point_) - zi); | ||
|  |         overallError += 0.5 | ||
|  |             * this->noise_.at(i)->distance(reprojectionError.vector()); | ||
|  |         i += 1; | ||
|  |       } | ||
|  |       return overallError; | ||
|  |     } else { | ||
|  |       // Just use version in base class
 | ||
|  |       return Base::totalReprojectionError(cameras, point_); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /// Cameras are computed in derived class
 | ||
|  |   virtual Cameras cameras(const Values& values) const = 0; | ||
|  | 
 | ||
|  |   /** return the landmark */ | ||
|  |   boost::optional<Point3> point() const { | ||
|  |     return point_; | ||
|  |   } | ||
|  | 
 | ||
|  |   /** COMPUTE the landmark */ | ||
|  |   boost::optional<Point3> point(const Values& values) const { | ||
|  |     triangulateSafe(values); | ||
|  |     return point_; | ||
|  |   } | ||
|  | 
 | ||
|  |   /** return the degenerate state */ | ||
|  |   inline bool isDegenerate() const { | ||
|  |     return (cheiralityException_ || degenerate_); | ||
|  |   } | ||
|  | 
 | ||
|  |   /** return the cheirality status flag */ | ||
|  |   inline bool isPointBehindCamera() const { | ||
|  |     return cheiralityException_; | ||
|  |   } | ||
|  |   /** return chirality verbosity */ | ||
|  |   inline bool verboseCheirality() const { | ||
|  |     return verboseCheirality_; | ||
|  |   } | ||
|  | 
 | ||
|  |   /** return flag for throwing cheirality exceptions */ | ||
|  |   inline bool throwCheirality() const { | ||
|  |     return throwCheirality_; | ||
|  |   } | ||
|  | 
 | ||
|  | private: | ||
|  | 
 | ||
|  |   /// Serialization function
 | ||
|  |   friend class boost::serialization::access; | ||
|  |   template<class ARCHIVE> | ||
|  |   void serialize(ARCHIVE & ar, const unsigned int version) { | ||
|  |     ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); | ||
|  |     ar & BOOST_SERIALIZATION_NVP(throwCheirality_); | ||
|  |     ar & BOOST_SERIALIZATION_NVP(verboseCheirality_); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | } // \ namespace gtsam
 |