| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation,  | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * @file LinearizedFactor.cpp | 
					
						
							|  |  |  |  * @brief A dummy factor that allows a linear factor to act as a nonlinear factor | 
					
						
							|  |  |  |  * @author Alex Cunningham | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <gtsam_unstable/nonlinear/LinearizedFactor.h>
 | 
					
						
							|  |  |  | #include <boost/foreach.hpp>
 | 
					
						
							|  |  |  | #include <iostream>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | namespace gtsam { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | LinearizedGaussianFactor::LinearizedGaussianFactor(const GaussianFactor::shared_ptr& gaussian, const Ordering& ordering, const Values& lin_points) { | 
					
						
							|  |  |  |   // Extract the keys and linearization points
 | 
					
						
							|  |  |  |   BOOST_FOREACH(const Index& idx, gaussian->keys()) { | 
					
						
							|  |  |  |     // find full symbol
 | 
					
						
							|  |  |  |     if (idx < ordering.size()) { | 
					
						
							|  |  |  |       Key key = ordering.key(idx); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // extract linearization point
 | 
					
						
							|  |  |  |       assert(lin_points.exists(key)); | 
					
						
							|  |  |  |       this->lin_points_.insert(key, lin_points.at(key)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |       // store keys
 | 
					
						
							|  |  |  |       this->keys_.push_back(key); | 
					
						
							|  |  |  |     } else { | 
					
						
							|  |  |  |       throw std::runtime_error("LinearizedGaussianFactor: could not find index in decoder!"); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | LinearizedJacobianFactor::LinearizedJacobianFactor() : Ab_(matrix_) { | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | LinearizedJacobianFactor::LinearizedJacobianFactor(const JacobianFactor::shared_ptr& jacobian, | 
					
						
							|  |  |  |     const Ordering& ordering, const Values& lin_points) | 
					
						
							|  |  |  | : Base(jacobian, ordering, lin_points), Ab_(matrix_) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Get the Ab matrix from the Jacobian factor, with any covariance baked in
 | 
					
						
							|  |  |  |   AbMatrix fullMatrix = jacobian->matrix_augmented(true); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create the dims array
 | 
					
						
							| 
									
										
										
										
											2013-02-25 03:09:52 +08:00
										 |  |  |   size_t *dims = (size_t *)alloca(sizeof(size_t) * (jacobian->size() + 1)); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  |   size_t index = 0; | 
					
						
							|  |  |  |   for(JacobianFactor::const_iterator iter = jacobian->begin(); iter != jacobian->end(); ++iter) { | 
					
						
							|  |  |  |     dims[index++] = jacobian->getDim(iter); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   dims[index] = 1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Update the BlockInfo accessor
 | 
					
						
							|  |  |  |   BlockAb Ab(fullMatrix, dims, dims+jacobian->size()+1); | 
					
						
							|  |  |  |   Ab.swap(Ab_); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void LinearizedJacobianFactor::print(const std::string& s, const KeyFormatter& keyFormatter) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   std::cout << s << std::endl; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   std::cout << "Nonlinear Keys: "; | 
					
						
							|  |  |  |   BOOST_FOREACH(const Key& key, this->keys()) | 
					
						
							|  |  |  |     std::cout << keyFormatter(key) << " "; | 
					
						
							|  |  |  |   std::cout << std::endl; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   for(const_iterator key=begin(); key!=end(); ++key) | 
					
						
							|  |  |  |     std::cout << boost::format("A[%1%]=\n")%keyFormatter(*key) << A(*key) << std::endl; | 
					
						
							|  |  |  |   std::cout << "b=\n" << b() << std::endl; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   lin_points_.print("Linearization Point: "); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | bool LinearizedJacobianFactor::equals(const NonlinearFactor& expected, double tol) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   const This *e = dynamic_cast<const This*> (&expected); | 
					
						
							|  |  |  |   if (e) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Matrix thisMatrix = this->Ab_.range(0, Ab_.nBlocks()); | 
					
						
							|  |  |  |     Matrix rhsMatrix = e->Ab_.range(0, Ab_.nBlocks()); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return Base::equals(expected, tol) | 
					
						
							|  |  |  |         && lin_points_.equals(e->lin_points_, tol) | 
					
						
							|  |  |  |         && equal_with_abs_tol(thisMatrix, rhsMatrix, tol); | 
					
						
							|  |  |  |   } else { | 
					
						
							|  |  |  |     return false; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | double LinearizedJacobianFactor::error(const Values& c) const { | 
					
						
							|  |  |  |   Vector errorVector = error_vector(c); | 
					
						
							|  |  |  |   return 0.5 * errorVector.dot(errorVector); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | boost::shared_ptr<GaussianFactor> | 
					
						
							|  |  |  | LinearizedJacobianFactor::linearize(const Values& c, const Ordering& ordering) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create the 'terms' data structure for the Jacobian constructor
 | 
					
						
							|  |  |  |   std::vector<std::pair<Index, Matrix> > terms; | 
					
						
							|  |  |  |   BOOST_FOREACH(Key key, keys()) { | 
					
						
							|  |  |  |     terms.push_back(std::make_pair(ordering[key], this->A(key))); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // compute rhs
 | 
					
						
							|  |  |  |   Vector b = -error_vector(c); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return boost::shared_ptr<GaussianFactor>(new JacobianFactor(terms, b, noiseModel::Unit::Create(dim()))); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | Vector LinearizedJacobianFactor::error_vector(const Values& c) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   Vector errorVector = -b(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   BOOST_FOREACH(Key key, this->keys()) { | 
					
						
							|  |  |  |     const Value& newPt = c.at(key); | 
					
						
							|  |  |  |     const Value& linPt = lin_points_.at(key); | 
					
						
							|  |  |  |     Vector d = linPt.localCoordinates_(newPt); | 
					
						
							|  |  |  |     const constABlock A = this->A(key); | 
					
						
							|  |  |  |     errorVector += A * d; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return errorVector; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | LinearizedHessianFactor::LinearizedHessianFactor() : info_(matrix_) { | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | LinearizedHessianFactor::LinearizedHessianFactor(const HessianFactor::shared_ptr& hessian, | 
					
						
							|  |  |  |       const Ordering& ordering, const Values& lin_points) | 
					
						
							|  |  |  | : Base(hessian, ordering, lin_points), info_(matrix_) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Copy the augmented matrix holding G, g, and f
 | 
					
						
							|  |  |  |   Matrix fullMatrix = hessian->info(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create the dims array
 | 
					
						
							| 
									
										
										
										
											2013-02-25 03:09:52 +08:00
										 |  |  |   size_t *dims = (size_t*)alloca(sizeof(size_t)*(hessian->size() + 1)); | 
					
						
							| 
									
										
										
										
											2013-02-20 05:37:17 +08:00
										 |  |  |   size_t index = 0; | 
					
						
							|  |  |  |   for(HessianFactor::const_iterator iter = hessian->begin(); iter != hessian->end(); ++iter) { | 
					
						
							|  |  |  |     dims[index++] = hessian->getDim(iter); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   dims[index] = 1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Update the BlockInfo accessor
 | 
					
						
							|  |  |  |   BlockInfo infoMatrix(fullMatrix, dims, dims+hessian->size()+1); | 
					
						
							|  |  |  |   infoMatrix.swap(info_); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | void LinearizedHessianFactor::print(const std::string& s, const KeyFormatter& keyFormatter) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   std::cout << s << std::endl; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   std::cout << "Nonlinear Keys: "; | 
					
						
							|  |  |  |   BOOST_FOREACH(const Key& key, this->keys()) | 
					
						
							|  |  |  |     std::cout << keyFormatter(key) << " "; | 
					
						
							|  |  |  |   std::cout << std::endl; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   gtsam::print(Matrix(info_.range(0,info_.nBlocks(), 0,info_.nBlocks()).selfadjointView<Eigen::Upper>()), "Ab^T * Ab: "); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   lin_points_.print("Linearization Point: "); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | bool LinearizedHessianFactor::equals(const NonlinearFactor& expected, double tol) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   const This *e = dynamic_cast<const This*> (&expected); | 
					
						
							|  |  |  |   if (e) { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     Matrix thisMatrix = this->info_.full().selfadjointView<Eigen::Upper>(); | 
					
						
							|  |  |  |     thisMatrix(thisMatrix.rows()-1, thisMatrix.cols()-1) = 0.0; | 
					
						
							|  |  |  |     Matrix rhsMatrix = e->info_.full().selfadjointView<Eigen::Upper>(); | 
					
						
							|  |  |  |     rhsMatrix(rhsMatrix.rows()-1, rhsMatrix.cols()-1) = 0.0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     return Base::equals(expected, tol) | 
					
						
							|  |  |  |         && lin_points_.equals(e->lin_points_, tol) | 
					
						
							|  |  |  |         && equal_with_abs_tol(thisMatrix, rhsMatrix, tol); | 
					
						
							|  |  |  |   } else { | 
					
						
							|  |  |  |     return false; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | double LinearizedHessianFactor::error(const Values& c) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Construct an error vector in key-order from the Values
 | 
					
						
							|  |  |  |   Vector dx = zero(dim()); | 
					
						
							|  |  |  |   size_t index = 0; | 
					
						
							|  |  |  |   for(unsigned int i = 0; i < this->size(); ++i){ | 
					
						
							|  |  |  |     Key key = this->keys()[i]; | 
					
						
							|  |  |  |     const Value& newPt = c.at(key); | 
					
						
							|  |  |  |     const Value& linPt = lin_points_.at(key); | 
					
						
							|  |  |  |     dx.segment(index, linPt.dim()) = linPt.localCoordinates_(newPt); | 
					
						
							|  |  |  |     index += linPt.dim(); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // error 0.5*(f - 2*x'*g + x'*G*x)
 | 
					
						
							|  |  |  |   double f = constantTerm(); | 
					
						
							|  |  |  |   double xtg = dx.dot(linearTerm()); | 
					
						
							|  |  |  |   double xGx = dx.transpose() * squaredTerm().selfadjointView<Eigen::Upper>() * dx; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return 0.5 * (f - 2.0 * xtg +  xGx); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* ************************************************************************* */ | 
					
						
							|  |  |  | boost::shared_ptr<GaussianFactor> | 
					
						
							|  |  |  | LinearizedHessianFactor::linearize(const Values& c, const Ordering& ordering) const { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Use the ordering to convert the keys into indices;
 | 
					
						
							|  |  |  |   std::vector<Index> js; | 
					
						
							|  |  |  |   BOOST_FOREACH(Key key, this->keys()){ | 
					
						
							|  |  |  |     js.push_back(ordering.at(key)); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Make a copy of the info matrix
 | 
					
						
							|  |  |  |   Matrix newMatrix; | 
					
						
							|  |  |  |   SymmetricBlockView<Matrix> newInfo(newMatrix); | 
					
						
							|  |  |  |   newInfo.assignNoalias(info_); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Construct an error vector in key-order from the Values
 | 
					
						
							|  |  |  |   Vector dx = zero(dim()); | 
					
						
							|  |  |  |   size_t index = 0; | 
					
						
							|  |  |  |   for(unsigned int i = 0; i < this->size(); ++i){ | 
					
						
							|  |  |  |     Key key = this->keys()[i]; | 
					
						
							|  |  |  |     const Value& newPt = c.at(key); | 
					
						
							|  |  |  |     const Value& linPt = lin_points_.at(key); | 
					
						
							|  |  |  |     dx.segment(index, linPt.dim()) = linPt.localCoordinates_(newPt); | 
					
						
							|  |  |  |     index += linPt.dim(); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // f2 = f1 - 2*dx'*g1 + dx'*G1*dx
 | 
					
						
							|  |  |  |   //newInfo(this->size(), this->size())(0,0) += -2*dx.dot(linearTerm()) + dx.transpose() * squaredTerm().selfadjointView<Eigen::Upper>() * dx;
 | 
					
						
							|  |  |  |   double f = constantTerm() - 2*dx.dot(linearTerm()) + dx.transpose() * squaredTerm().selfadjointView<Eigen::Upper>() * dx; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // g2 = g1 - G1*dx
 | 
					
						
							|  |  |  |   //newInfo.rangeColumn(0, this->size(), this->size(), 0) -= squaredTerm().selfadjointView<Eigen::Upper>() * dx;
 | 
					
						
							|  |  |  |   Vector g = linearTerm() - squaredTerm().selfadjointView<Eigen::Upper>() * dx; | 
					
						
							|  |  |  |   std::vector<Vector> gs; | 
					
						
							|  |  |  |   for(size_t i = 0; i < info_.nBlocks()-1; ++i) { | 
					
						
							|  |  |  |     gs.push_back(g.segment(info_.offset(i), info_.offset(i+1) - info_.offset(i))); | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // G2 = G1
 | 
					
						
							|  |  |  |   // Do Nothing
 | 
					
						
							|  |  |  |   std::vector<Matrix> Gs; | 
					
						
							|  |  |  |   for(size_t i = 0; i < info_.nBlocks()-1; ++i) { | 
					
						
							|  |  |  |     for(size_t j = i; j < info_.nBlocks()-1; ++j) { | 
					
						
							|  |  |  |       Gs.push_back(info_(i,j)); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create a Hessian Factor from the modified info matrix
 | 
					
						
							|  |  |  |   //return boost::shared_ptr<GaussianFactor>(new HessianFactor(js, newInfo));
 | 
					
						
							|  |  |  |   return boost::shared_ptr<GaussianFactor>(new HessianFactor(js, Gs, gs, f)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | } // \namespace aspn
 |