293 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			293 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
|  | /*
 | ||
|  |  * schedulingExample.cpp | ||
|  |  * @brief hard scheduling example | ||
|  |  * @date March 25, 2011 | ||
|  |  * @author Frank Dellaert | ||
|  |  */ | ||
|  | 
 | ||
|  | #define ENABLE_TIMING
 | ||
|  | #define ADD_NO_CACHING
 | ||
|  | #define ADD_NO_PRUNING
 | ||
|  | #include <gtsam_unstable/discrete/Scheduler.h>
 | ||
|  | #include <gtsam/base/debug.h>
 | ||
|  | #include <gtsam/base/timing.h>
 | ||
|  | 
 | ||
|  | #include <boost/assign/std/vector.hpp>
 | ||
|  | #include <boost/assign/std/map.hpp>
 | ||
|  | #include <boost/optional.hpp>
 | ||
|  | #include <boost/foreach.hpp>
 | ||
|  | #include <boost/format.hpp>
 | ||
|  | 
 | ||
|  | #include <algorithm>
 | ||
|  | 
 | ||
|  | using namespace boost::assign; | ||
|  | using namespace std; | ||
|  | using namespace gtsam; | ||
|  | 
 | ||
|  | size_t NRSTUDENTS = 12; | ||
|  | 
 | ||
|  | bool NonZero(size_t i) { | ||
|  |   return i > 0; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | void addStudent(Scheduler& s, size_t i) { | ||
|  |   switch (i) { | ||
|  |   case 0: | ||
|  |     s.addStudent("Young, Carol", "Controls", "Autonomy", "Mechanics", "Fumin Zhang"); | ||
|  |     break; | ||
|  |   case 1: | ||
|  |     s.addStudent("Erdogan, Can", "Controls", "AI", "Perception", "Mike Stilman"); | ||
|  |     break; | ||
|  |   case 2: | ||
|  |     s.addStudent("Arslan, Oktay", "Controls", "AI", "Mechanics", "Panos Tsiotras"); | ||
|  |     break; | ||
|  |   case 3: | ||
|  |     s.addStudent("Bhattacharjee, Tapomayukh", "Controls", "AI", "Mechanics", "Charlie Kemp"); | ||
|  |     break; | ||
|  |   case 4: | ||
|  |     s.addStudent("Grey, Michael", "Controls", "AI", "Mechanics", "Wayne Book"); | ||
|  |     break; | ||
|  |   case 5: | ||
|  |     s.addStudent("O'Flaherty, Rowland", "Controls", "AI", "Mechanics", "Magnus Egerstedt"); | ||
|  |     break; | ||
|  |   case 6: | ||
|  |     s.addStudent("Pickem, Daniel", "Controls", "AI", "Mechanics", "Jeff Shamma"); | ||
|  |     break; | ||
|  |   case 7: | ||
|  |     s.addStudent("Lee, Kimoon", "Controls", "Autonomy", "Mechanics", "Henrik Christensen"); | ||
|  |     break; | ||
|  |   case 8: | ||
|  |     s.addStudent("Melim, Andrew Lyon", "Controls", "AI", "Perception", "Frank Dellaert"); | ||
|  |     break; | ||
|  |   case 9: | ||
|  |     s.addStudent("Jensen, David", "Controls", "Autonomy", "HRI", "Andrea Thomaz"); | ||
|  |     break; | ||
|  |   case 10: | ||
|  |     s.addStudent("Nisbett, Jared", "Controls", "Perception", "Mechanics", "Magnus Egerstedt"); | ||
|  |     break; | ||
|  |   case 11: | ||
|  |     s.addStudent("Pan, Yunpeng", "Controls", "Perception", "Mechanics", "Wayne Book"); | ||
|  |     break; | ||
|  | //    case 12:
 | ||
|  | //    s.addStudent("Grice, Phillip", "Controls", "None", "None", "Wayne Book");
 | ||
|  | //    break;
 | ||
|  | //  case 13:
 | ||
|  | //    s.addStudent("Robinette, Paul", "Controls", "None", "None", "Ayanna Howard");
 | ||
|  | //    break;
 | ||
|  | //  case 14:
 | ||
|  | //    s.addStudent("Huaman, Ana", "Autonomy", "None", "None", "Mike Stilman");
 | ||
|  | //    break;
 | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | Scheduler largeExample(size_t nrStudents = NRSTUDENTS, bool addStudents=true) { | ||
|  |   string path("../../../gtsam_unstable/discrete/examples/"); | ||
|  |   Scheduler s(nrStudents, path + "Doodle2013.csv"); | ||
|  | 
 | ||
|  |   s.addArea("Harvey Lipkin", "Mechanics"); | ||
|  |   s.addArea("Jun Ueda", "Mechanics"); | ||
|  |   s.addArea("Mike Stilman", "Mechanics"); | ||
|  | //  s.addArea("Frank Dellaert", "Mechanics");
 | ||
|  |   s.addArea("Wayne Book", "Mechanics"); | ||
|  | //  s.addArea("Charlie Kemp", "Mechanics");
 | ||
|  | 
 | ||
|  |   s.addArea("Patricio Vela", "Controls"); | ||
|  |   s.addArea("Magnus Egerstedt", "Controls"); | ||
|  |   s.addArea("Jun Ueda", "Controls"); | ||
|  |   s.addArea("Panos Tsiotras", "Controls"); | ||
|  |   s.addArea("Fumin Zhang", "Controls"); | ||
|  |   s.addArea("Ayanna Howard", "Controls"); | ||
|  |   s.addArea("Jeff Shamma", "Controls"); | ||
|  | 
 | ||
|  |   s.addArea("Frank Dellaert", "Perception"); | ||
|  |   s.addArea("Henrik Christensen", "Perception"); | ||
|  | 
 | ||
|  |   s.addArea("Mike Stilman", "AI"); | ||
|  | //  s.addArea("Henrik Christensen", "AI");
 | ||
|  | //  s.addArea("Ayanna Howard", "AI");
 | ||
|  |   s.addArea("Charles Isbell", "AI"); | ||
|  | //  s.addArea("Tucker Balch", "AI");
 | ||
|  |   s.addArea("Andrea Thomaz", "AI"); | ||
|  | 
 | ||
|  |   s.addArea("Ayanna Howard", "Autonomy"); | ||
|  |   s.addArea("Charlie Kemp", "Autonomy"); | ||
|  | 
 | ||
|  | //  s.addArea("Andrea Thomaz", "HRI");
 | ||
|  |   s.addArea("Karen Feigh", "HRI"); | ||
|  | //  s.addArea("Charlie Kemp", "HRI");
 | ||
|  | 
 | ||
|  |   // add students
 | ||
|  |   if (addStudents) | ||
|  |     for (size_t i = 0; i < nrStudents; i++) | ||
|  |       addStudent(s, i); | ||
|  | 
 | ||
|  |   return s; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | void runLargeExample() { | ||
|  | 
 | ||
|  |   Scheduler scheduler = largeExample(); | ||
|  |   scheduler.print(); | ||
|  | 
 | ||
|  |   // BUILD THE GRAPH !
 | ||
|  |   size_t addMutex = 3; | ||
|  |   SETDEBUG("Scheduler::buildGraph", true); | ||
|  |   scheduler.buildGraph(addMutex); | ||
|  | 
 | ||
|  |   // Do brute force product and output that to file
 | ||
|  |   if (scheduler.nrStudents() == 1) { // otherwise too slow
 | ||
|  |     DecisionTreeFactor product = scheduler.product(); | ||
|  |     product.dot("scheduling-large", false); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Do exact inference
 | ||
|  |   //  SETDEBUG("timing-verbose", true);
 | ||
|  |   SETDEBUG("DiscreteConditional::DiscreteConditional", true); | ||
|  | //#define SAMPLE
 | ||
|  | #ifdef SAMPLE
 | ||
|  |   gttic(large); | ||
|  |   DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate(); | ||
|  |   gttoc(large); | ||
|  |   tictoc_finishedIteration(); | ||
|  |   tictoc_print(); | ||
|  |   for (size_t i=0;i<100;i++) { | ||
|  |     DiscreteFactor::sharedValues assignment = sample(*chordal); | ||
|  |     vector<size_t> stats(scheduler.nrFaculty()); | ||
|  |     scheduler.accumulateStats(assignment, stats); | ||
|  |     size_t max = *max_element(stats.begin(), stats.end()); | ||
|  |     size_t min = *min_element(stats.begin(), stats.end()); | ||
|  |     size_t nz = count_if(stats.begin(), stats.end(), NonZero); | ||
|  | //    cout << min << ", " << max << ", "  << nz << endl;
 | ||
|  |     if (nz >= 13 && min >=1 && max <= 4) { | ||
|  |       cout << "======================================================\n"; | ||
|  |       scheduler.printAssignment(assignment); | ||
|  |     } | ||
|  |   } | ||
|  | #else
 | ||
|  |   gttic(large); | ||
|  |   DiscreteFactor::sharedValues MPE = scheduler.optimalAssignment(); | ||
|  |   gttoc(large); | ||
|  |   tictoc_finishedIteration(); | ||
|  |   tictoc_print(); | ||
|  |   scheduler.printAssignment(MPE); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | // Solve a series of relaxed problems for maximum flexibility solution
 | ||
|  | void solveStaged(size_t addMutex = 2) { | ||
|  | 
 | ||
|  |   bool debug = false; | ||
|  | 
 | ||
|  |   // super-hack! just count...
 | ||
|  |   SETDEBUG("DiscreteConditional::COUNT", true); | ||
|  |   SETDEBUG("DiscreteConditional::DiscreteConditional", debug); // progress
 | ||
|  | 
 | ||
|  |   // make a vector with slot availability, initially all 1
 | ||
|  |   // Reads file to get count :-)
 | ||
|  |   vector<double> slotsAvailable(largeExample(0).nrTimeSlots(), 1.0); | ||
|  | 
 | ||
|  |   // now, find optimal value for each student, using relaxed mutex constraints
 | ||
|  |   for (size_t s = 0; s < NRSTUDENTS; s++) { | ||
|  |     // add all students first time, then drop last one second time, etc...
 | ||
|  |     Scheduler scheduler = largeExample(NRSTUDENTS - s); | ||
|  | //    scheduler.print(str(boost::format("Scheduler %d") % (NRSTUDENTS-s)));
 | ||
|  | 
 | ||
|  |     // only allow slots not yet taken
 | ||
|  |     scheduler.setSlotsAvailable(slotsAvailable); | ||
|  | 
 | ||
|  |     // BUILD THE GRAPH !
 | ||
|  |     scheduler.buildGraph(addMutex); | ||
|  | 
 | ||
|  |     // Do EXACT INFERENCE
 | ||
|  |     gttic_(eliminate); | ||
|  |     DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate(); | ||
|  |     gttoc_(eliminate); | ||
|  | 
 | ||
|  |     // find root node
 | ||
|  |     DiscreteConditional::shared_ptr root = *(chordal->rbegin()); | ||
|  |     if (debug) | ||
|  |       root->print(""/*scheduler.studentName(s)*/); | ||
|  | 
 | ||
|  |     // solve root node only
 | ||
|  |     Scheduler::Values values; | ||
|  |     size_t bestSlot = root->solve(values); | ||
|  | 
 | ||
|  |     // get corresponding count
 | ||
|  |     DiscreteKey dkey = scheduler.studentKey(NRSTUDENTS - 1 - s); | ||
|  |     values[dkey.first] = bestSlot; | ||
|  |     double count = (*root)(values); | ||
|  | 
 | ||
|  |     // remove this slot from consideration
 | ||
|  |     slotsAvailable[bestSlot] = 0.0; | ||
|  |     cout << boost::format("%s = %d (%d), count = %d") % scheduler.studentName(NRSTUDENTS-1-s) | ||
|  |         % scheduler.slotName(bestSlot) % bestSlot % count << endl; | ||
|  |   } | ||
|  |   tictoc_print_(); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | // Sample from solution found above and evaluate cost function
 | ||
|  | DiscreteBayesNet::shared_ptr createSampler(size_t i, | ||
|  |     size_t slot, vector<Scheduler>& schedulers) { | ||
|  |   Scheduler scheduler = largeExample(1,false); | ||
|  |   addStudent(scheduler, i); | ||
|  |   cout << " creating sampler for " << scheduler.studentName(0) << endl; | ||
|  |   SETDEBUG("Scheduler::buildGraph", false); | ||
|  | //  scheduler.print();
 | ||
|  |   scheduler.addStudentSpecificConstraints(0, slot); | ||
|  |   DiscreteBayesNet::shared_ptr chordal = scheduler.eliminate(); | ||
|  |   schedulers.push_back(scheduler); | ||
|  |   return chordal; | ||
|  | } | ||
|  | 
 | ||
|  | void sampleSolutions() { | ||
|  | 
 | ||
|  |   size_t nrFaculty = 17; // Change to correct number !
 | ||
|  | 
 | ||
|  |   vector<Scheduler> schedulers; | ||
|  |   vector<DiscreteBayesNet::shared_ptr> samplers(NRSTUDENTS); | ||
|  | 
 | ||
|  |   // Given the time-slots, we can create NRSTUDENTS independent samplers
 | ||
|  |   vector<size_t> slots; | ||
|  |   slots += 12,11,13, 21,16,1, 3,2,6, 7,22,4; // given slots
 | ||
|  |   for (size_t i = 0; i < NRSTUDENTS; i++) | ||
|  |     samplers[i] = createSampler(i, slots[i], schedulers); | ||
|  | 
 | ||
|  |   // now, sample schedules
 | ||
|  |   for (size_t n = 0; n < 10000; n++) { | ||
|  |     vector<size_t> stats(nrFaculty, 0); | ||
|  |     vector<Scheduler::sharedValues> samples; | ||
|  |     for (size_t i = 0; i < NRSTUDENTS; i++) { | ||
|  |       samples.push_back(sample(*samplers[i])); | ||
|  |       schedulers[i].accumulateStats(samples[i], stats); | ||
|  |     } | ||
|  |     size_t max = *max_element(stats.begin(), stats.end()); | ||
|  |     size_t min = *min_element(stats.begin(), stats.end()); | ||
|  |     size_t nz = count_if(stats.begin(), stats.end(), NonZero); | ||
|  |     if (nz >= 16 && max <= 3) { | ||
|  |       cout << boost::format( | ||
|  |           "Sampled schedule %d, min = %d, nz = %d, max = %d\n") % (n + 1) % min | ||
|  |           % nz % max; | ||
|  |       for (size_t i = 0; i < NRSTUDENTS; i++) { | ||
|  |         cout << schedulers[i].studentName(0) << " : " << schedulers[i].slotName( | ||
|  |             slots[i]) << endl; | ||
|  |         schedulers[i].printSpecial(samples[i]); | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | int main() { | ||
|  | //  runLargeExample();
 | ||
|  | //  solveStaged(3);
 | ||
|  |   sampleSolutions(); | ||
|  |   return 0; | ||
|  | } | ||
|  | /* ************************************************************************* */ | ||
|  | 
 |