59 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			59 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			C++
		
	
	
|  | /*
 | ||
|  |  * Pose2SLAMExample_easy.cpp | ||
|  |  * | ||
|  |  *  Created on: Oct 21, 2010 | ||
|  |  *      Author: ydjian | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <cmath>
 | ||
|  | #include <iostream>
 | ||
|  | #include <boost/shared_ptr.hpp>
 | ||
|  | 
 | ||
|  | // pull in the Pose2 SLAM domain with all typedefs and helper functions defined
 | ||
|  | #include <gtsam/slam/pose2SLAM.h>
 | ||
|  | #include <gtsam/nonlinear/NonlinearOptimization-inl.h>
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | using namespace gtsam; | ||
|  | using namespace gtsam::pose2SLAM; | ||
|  | 
 | ||
|  | int main(int argc, char** argv) { | ||
|  | 	// create keys for robot positions
 | ||
|  | 	Key x1(1), x2(2), x3(3); | ||
|  | 
 | ||
|  | 	/* 1. create graph container and add factors to it */ | ||
|  | 	Graph graph ; | ||
|  | 
 | ||
|  | 	/* 2.a add prior  */ | ||
|  | 	// gaussian for prior
 | ||
|  | 	SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); | ||
|  | 	Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin
 | ||
|  | 	graph.addPrior(x1, prior_measurement, prior_model); // add directly to graph
 | ||
|  | 
 | ||
|  | 	/* 2.b add odometry */ | ||
|  | 	// general noisemodel for odometry
 | ||
|  | 	SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); | ||
|  | 
 | ||
|  | 	/* Pose2 measurements take (x,y,theta), where theta is taken from the positive x-axis*/ | ||
|  | 	Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
 | ||
|  | 	graph.addConstraint(x1, x2, odom_measurement, odom_model); | ||
|  | 	graph.addConstraint(x2, x3, odom_measurement, odom_model); | ||
|  | 	graph.print("full graph"); | ||
|  | 
 | ||
|  |     /* 3. Create the data structure to hold the initial estinmate to the solution
 | ||
|  |      * initialize to noisy points */ | ||
|  | 	Values initial; | ||
|  | 	initial.insert(x1, Pose2(0.5, 0.0, 0.2)); | ||
|  | 	initial.insert(x2, Pose2(2.3, 0.1,-0.2)); | ||
|  | 	initial.insert(x3, Pose2(4.1, 0.1, 0.1)); | ||
|  | 	initial.print("initial estimate"); | ||
|  | 
 | ||
|  | 	/* 4 Single Step Optimization
 | ||
|  | 	* optimize using Levenberg-Marquardt optimization with an ordering from colamd */ | ||
|  | 	Values result = optimize<Graph, Values>(graph, initial); | ||
|  | 	result.print("final result"); | ||
|  | 
 | ||
|  | 
 | ||
|  | 	return 0; | ||
|  | } |