| 
									
										
										
										
											2012-06-06 11:25:56 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation,  | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							| 
									
										
										
										
											2012-10-02 22:40:07 +08:00
										 |  |  |  * @file  DiscreteBayesNet_FG.cpp | 
					
						
							|  |  |  |  * @brief   Discrete Bayes Net example using Factor Graphs | 
					
						
							|  |  |  |  * @author  Abhijit | 
					
						
							|  |  |  |  * @date  Jun 4, 2012 | 
					
						
							| 
									
										
										
										
											2012-06-06 11:25:56 +08:00
										 |  |  |  * | 
					
						
							|  |  |  |  * We use the famous Rain/Cloudy/Sprinkler Example of [Russell & Norvig, 2009, p529] | 
					
						
							|  |  |  |  * You may be familiar with other graphical model packages like BNT (available | 
					
						
							|  |  |  |  * at http://bnt.googlecode.com/svn/trunk/docs/usage.html) where this is used as an
 | 
					
						
							|  |  |  |  * example. The following demo is same as that in the above link, except that | 
					
						
							|  |  |  |  * everything is using GTSAM. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <gtsam/discrete/DiscreteFactorGraph.h>
 | 
					
						
							|  |  |  | #include <gtsam/discrete/DiscreteSequentialSolver.h>
 | 
					
						
							|  |  |  | #include <iomanip>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | using namespace std; | 
					
						
							|  |  |  | using namespace gtsam; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int main(int argc, char **argv) { | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-02 22:40:07 +08:00
										 |  |  |   // We assume binary state variables
 | 
					
						
							|  |  |  |   // we have 0 == "False" and 1 == "True"
 | 
					
						
							|  |  |  |   const size_t nrStates = 2; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // define variables
 | 
					
						
							|  |  |  |   DiscreteKey Cloudy(1, nrStates), Sprinkler(2, nrStates), Rain(3, nrStates), | 
					
						
							|  |  |  |       WetGrass(4, nrStates); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // create Factor Graph of the bayes net
 | 
					
						
							|  |  |  |   DiscreteFactorGraph graph; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // add factors
 | 
					
						
							|  |  |  |   graph.add(Cloudy, "0.5 0.5"); //P(Cloudy)
 | 
					
						
							|  |  |  |   graph.add(Cloudy & Sprinkler, "0.5 0.5 0.9 0.1"); //P(Sprinkler | Cloudy)
 | 
					
						
							|  |  |  |   graph.add(Cloudy & Rain, "0.8 0.2 0.2 0.8"); //P(Rain | Cloudy)
 | 
					
						
							|  |  |  |   graph.add(Sprinkler & Rain & WetGrass, | 
					
						
							|  |  |  |       "1 0 0.1 0.9 0.1 0.9 0.001 0.99"); //P(WetGrass | Sprinkler, Rain)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Alternatively we can also create a DiscreteBayesNet, add DiscreteConditional
 | 
					
						
							|  |  |  |   // factors and create a FactorGraph from it. (See testDiscreteBayesNet.cpp)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Since this is a relatively small distribution, we can as well print
 | 
					
						
							|  |  |  |   // the whole distribution..
 | 
					
						
							|  |  |  |   cout << "Distribution of Example: " << endl; | 
					
						
							|  |  |  |   cout << setw(11) << "Cloudy(C)" << setw(14) << "Sprinkler(S)" << setw(10) | 
					
						
							|  |  |  |       << "Rain(R)" << setw(14) << "WetGrass(W)" << setw(15) << "P(C,S,R,W)" | 
					
						
							|  |  |  |       << endl; | 
					
						
							|  |  |  |   for (size_t a = 0; a < nrStates; a++) | 
					
						
							|  |  |  |     for (size_t m = 0; m < nrStates; m++) | 
					
						
							|  |  |  |       for (size_t h = 0; h < nrStates; h++) | 
					
						
							|  |  |  |         for (size_t c = 0; c < nrStates; c++) { | 
					
						
							|  |  |  |           DiscreteFactor::Values values; | 
					
						
							|  |  |  |           values[Cloudy.first] = c; | 
					
						
							|  |  |  |           values[Sprinkler.first] = h; | 
					
						
							|  |  |  |           values[Rain.first] = m; | 
					
						
							|  |  |  |           values[WetGrass.first] = a; | 
					
						
							|  |  |  |           double prodPot = graph(values); | 
					
						
							|  |  |  |           cout << boolalpha << setw(8) << (bool) c << setw(14) | 
					
						
							|  |  |  |               << (bool) h << setw(12) << (bool) m << setw(13) | 
					
						
							|  |  |  |               << (bool) a << setw(16) << prodPot << endl; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // "Most Probable Explanation", i.e., configuration with largest value
 | 
					
						
							|  |  |  |   DiscreteSequentialSolver solver(graph); | 
					
						
							|  |  |  |   DiscreteFactor::sharedValues optimalDecoding = solver.optimize(); | 
					
						
							|  |  |  |   cout <<"\nMost Probable Explanation (MPE):" << endl; | 
					
						
							|  |  |  |   cout << boolalpha << "Cloudy = " << (bool)(*optimalDecoding)[Cloudy.first] | 
					
						
							|  |  |  |                   << "  Sprinkler = " << (bool)(*optimalDecoding)[Sprinkler.first] | 
					
						
							|  |  |  |                   << "  Rain = " << boolalpha << (bool)(*optimalDecoding)[Rain.first] | 
					
						
							|  |  |  |                   << "  WetGrass = " << (bool)(*optimalDecoding)[WetGrass.first]<< endl; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // "Inference" We show an inference query like: probability that the Sprinkler was on;
 | 
					
						
							|  |  |  |   // given that the grass is wet i.e. P( S | W=1) =?
 | 
					
						
							|  |  |  |   cout << "\nInference Query: Probability of Sprinkler being on given Grass is Wet" << endl; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Method 1: we can compute the joint marginal P(S,W) and from that we can compute
 | 
					
						
							|  |  |  |   // P(S | W=1) = P(S,W=1)/P(W=1) We do this in following three steps..
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   //Step1: Compute P(S,W)
 | 
					
						
							|  |  |  |   DiscreteFactorGraph jointFG; | 
					
						
							|  |  |  |   jointFG = *solver.jointFactorGraph(DiscreteKeys(Sprinkler & WetGrass).indices()); | 
					
						
							|  |  |  |   DecisionTreeFactor probSW = jointFG.product(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   //Step2: Compute P(W)
 | 
					
						
							|  |  |  |   DiscreteFactor::shared_ptr probW = solver.marginalFactor(WetGrass.first); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   //Step3: Computer P(S | W=1) = P(S,W=1)/P(W=1)
 | 
					
						
							|  |  |  |   DiscreteFactor::Values values; | 
					
						
							|  |  |  |   values[WetGrass.first] = 1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   //print P(S=0|W=1)
 | 
					
						
							|  |  |  |   values[Sprinkler.first] = 0; | 
					
						
							|  |  |  |   cout << "P(S=0|W=1) = " << probSW(values)/(*probW)(values) << endl; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   //print P(S=1|W=1)
 | 
					
						
							|  |  |  |   values[Sprinkler.first] = 1; | 
					
						
							|  |  |  |   cout << "P(S=1|W=1) = " << probSW(values)/(*probW)(values) << endl; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // TODO: Method 2 : One way is to modify the factor graph to
 | 
					
						
							|  |  |  |   // incorporate the evidence node and compute the marginal
 | 
					
						
							|  |  |  |   // TODO: graph.addEvidence(Cloudy,0);
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   return 0; | 
					
						
							| 
									
										
										
										
											2012-06-06 11:25:56 +08:00
										 |  |  | } |