| 
									
										
										
										
											2020-07-12 01:16:08 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | 
					
						
							|  |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							|  |  |  |  * @file  DiscreteBayesNetExample.cpp | 
					
						
							|  |  |  |  * @brief   Discrete Bayes Net example with famous Asia Bayes Network | 
					
						
							|  |  |  |  * @author  Frank Dellaert | 
					
						
							|  |  |  |  * @date  JULY 10, 2020 | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <gtsam/discrete/DiscreteFactorGraph.h>
 | 
					
						
							|  |  |  | #include <gtsam/discrete/DiscreteMarginals.h>
 | 
					
						
							| 
									
										
										
										
											2020-07-14 20:50:20 +08:00
										 |  |  | #include <gtsam/inference/BayesNet.h>
 | 
					
						
							| 
									
										
										
										
											2020-07-12 01:16:08 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | #include <iomanip>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | using namespace std; | 
					
						
							|  |  |  | using namespace gtsam; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int main(int argc, char **argv) { | 
					
						
							|  |  |  |   DiscreteBayesNet asia; | 
					
						
							|  |  |  |   DiscreteKey Asia(0, 2), Smoking(4, 2), Tuberculosis(3, 2), LungCancer(6, 2), | 
					
						
							|  |  |  |       Bronchitis(7, 2), Either(5, 2), XRay(2, 2), Dyspnea(1, 2); | 
					
						
							|  |  |  |   asia.add(Asia % "99/1"); | 
					
						
							|  |  |  |   asia.add(Smoking % "50/50"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   asia.add(Tuberculosis | Asia = "99/1 95/5"); | 
					
						
							|  |  |  |   asia.add(LungCancer | Smoking = "99/1 90/10"); | 
					
						
							|  |  |  |   asia.add(Bronchitis | Smoking = "70/30 40/60"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   asia.add((Either | Tuberculosis, LungCancer) = "F T T T"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   asia.add(XRay | Either = "95/5 2/98"); | 
					
						
							|  |  |  |   asia.add((Dyspnea | Either, Bronchitis) = "9/1 2/8 3/7 1/9"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // print
 | 
					
						
							|  |  |  |   vector<string> pretty = {"Asia",    "Dyspnea", "XRay",       "Tuberculosis", | 
					
						
							|  |  |  |                            "Smoking", "Either",  "LungCancer", "Bronchitis"}; | 
					
						
							|  |  |  |   auto formatter = [pretty](Key key) { return pretty[key]; }; | 
					
						
							|  |  |  |   asia.print("Asia", formatter); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Convert to factor graph
 | 
					
						
							|  |  |  |   DiscreteFactorGraph fg(asia); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // Create solver and eliminate
 | 
					
						
							| 
									
										
										
										
											2023-02-06 08:37:04 +08:00
										 |  |  |   const Ordering ordering{0, 1, 2, 3, 4, 5, 6, 7}; | 
					
						
							| 
									
										
										
										
											2020-07-12 01:16:08 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   // solve
 | 
					
						
							| 
									
										
										
										
											2022-01-22 07:12:38 +08:00
										 |  |  |   auto mpe = fg.optimize(); | 
					
						
							| 
									
										
										
										
											2021-11-21 05:34:53 +08:00
										 |  |  |   GTSAM_PRINT(mpe); | 
					
						
							| 
									
										
										
										
											2020-07-12 01:16:08 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   // We can also build a Bayes tree (directed junction tree).
 | 
					
						
							|  |  |  |   // The elimination order above will do fine:
 | 
					
						
							|  |  |  |   auto bayesTree = fg.eliminateMultifrontal(ordering); | 
					
						
							|  |  |  |   bayesTree->print("bayesTree", formatter); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // add evidence, we were in Asia and we have dyspnea
 | 
					
						
							|  |  |  |   fg.add(Asia, "0 1"); | 
					
						
							|  |  |  |   fg.add(Dyspnea, "0 1"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // solve again, now with evidence
 | 
					
						
							| 
									
										
										
										
											2022-01-22 07:12:38 +08:00
										 |  |  |   auto mpe2 = fg.optimize(); | 
					
						
							| 
									
										
										
										
											2021-11-21 05:34:53 +08:00
										 |  |  |   GTSAM_PRINT(mpe2); | 
					
						
							| 
									
										
										
										
											2020-07-12 01:16:08 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   // We can also sample from it
 | 
					
						
							| 
									
										
										
										
											2022-01-22 07:12:38 +08:00
										 |  |  |   DiscreteBayesNet::shared_ptr chordal = fg.eliminateSequential(ordering); | 
					
						
							| 
									
										
										
										
											2020-07-12 01:16:08 +08:00
										 |  |  |   cout << "\n10 samples:" << endl; | 
					
						
							|  |  |  |   for (size_t i = 0; i < 10; i++) { | 
					
						
							| 
									
										
										
										
											2022-01-22 07:12:38 +08:00
										 |  |  |     auto sample = chordal->sample(); | 
					
						
							| 
									
										
										
										
											2021-11-21 05:34:53 +08:00
										 |  |  |     GTSAM_PRINT(sample); | 
					
						
							| 
									
										
										
										
											2020-07-12 01:16:08 +08:00
										 |  |  |   } | 
					
						
							|  |  |  |   return 0; | 
					
						
							|  |  |  | } |