720 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
		
		
			
		
	
	
			720 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
|  | #LyX 2.3 created this file. For more info see http://www.lyx.org/ | ||
|  | \lyxformat 544 | ||
|  | \begin_document | ||
|  | \begin_header | ||
|  | \save_transient_properties true | ||
|  | \origin unavailable | ||
|  | \textclass article | ||
|  | \use_default_options true | ||
|  | \maintain_unincluded_children false | ||
|  | \language english | ||
|  | \language_package default | ||
|  | \inputencoding auto | ||
|  | \fontencoding global | ||
|  | \font_roman "default" "default" | ||
|  | \font_sans "default" "default" | ||
|  | \font_typewriter "default" "default" | ||
|  | \font_math "auto" "auto" | ||
|  | \font_default_family default | ||
|  | \use_non_tex_fonts false | ||
|  | \font_sc false | ||
|  | \font_osf false | ||
|  | \font_sf_scale 100 100 | ||
|  | \font_tt_scale 100 100 | ||
|  | \use_microtype false | ||
|  | \use_dash_ligatures true | ||
|  | \graphics default | ||
|  | \default_output_format default | ||
|  | \output_sync 0 | ||
|  | \bibtex_command default | ||
|  | \index_command default | ||
|  | \paperfontsize 11 | ||
|  | \spacing single | ||
|  | \use_hyperref false | ||
|  | \papersize default | ||
|  | \use_geometry true | ||
|  | \use_package amsmath 1 | ||
|  | \use_package amssymb 1 | ||
|  | \use_package cancel 1 | ||
|  | \use_package esint 1 | ||
|  | \use_package mathdots 1 | ||
|  | \use_package mathtools 1 | ||
|  | \use_package mhchem 1 | ||
|  | \use_package stackrel 1 | ||
|  | \use_package stmaryrd 1 | ||
|  | \use_package undertilde 1 | ||
|  | \cite_engine basic | ||
|  | \cite_engine_type default | ||
|  | \biblio_style plain | ||
|  | \use_bibtopic false | ||
|  | \use_indices false | ||
|  | \paperorientation portrait | ||
|  | \suppress_date false | ||
|  | \justification true | ||
|  | \use_refstyle 1 | ||
|  | \use_minted 0 | ||
|  | \index Index | ||
|  | \shortcut idx | ||
|  | \color #008000 | ||
|  | \end_index | ||
|  | \leftmargin 1in | ||
|  | \topmargin 1in | ||
|  | \rightmargin 1in | ||
|  | \bottommargin 1in | ||
|  | \secnumdepth 3 | ||
|  | \tocdepth 3 | ||
|  | \paragraph_separation indent | ||
|  | \paragraph_indentation default | ||
|  | \is_math_indent 0 | ||
|  | \math_numbering_side default | ||
|  | \quotes_style english | ||
|  | \dynamic_quotes 0 | ||
|  | \papercolumns 1 | ||
|  | \papersides 1 | ||
|  | \paperpagestyle default | ||
|  | \tracking_changes false | ||
|  | \output_changes false | ||
|  | \html_math_output 0 | ||
|  | \html_css_as_file 0 | ||
|  | \html_be_strict false | ||
|  | \end_header | ||
|  | 
 | ||
|  | \begin_body | ||
|  | 
 | ||
|  | \begin_layout Title | ||
|  | Hybrid Inference | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Author | ||
|  | Frank Dellaert & Varun Agrawal | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Date | ||
|  | January 2023 | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | Hybrid Conditionals | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Here we develop a hybrid conditional density, on continuous variables (typically | ||
|  |  a measurement  | ||
|  | \begin_inset Formula $x$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | ), given a mix of continuous variables  | ||
|  | \begin_inset Formula $y$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and discrete variables  | ||
|  | \begin_inset Formula $m$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  We start by reviewing a Gaussian conditional density and its invariants | ||
|  |  (relationship between density, error, and normalization constant), and | ||
|  |  then work out what needs to happen for a hybrid version. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsubsection* | ||
|  | GaussianConditional | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | A  | ||
|  | \emph on | ||
|  | GaussianConditional | ||
|  | \emph default | ||
|  |  is a properly normalized, multivariate Gaussian conditional density: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | P(x|y)=\frac{1}{\sqrt{|2\pi\Sigma|}}\exp\left\{ -\frac{1}{2}\|Rx+Sy-d\|_{\Sigma}^{2}\right\}  | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | where  | ||
|  | \begin_inset Formula $R$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  is square and upper-triangular. | ||
|  |  For every  | ||
|  | \emph on | ||
|  | GaussianConditional | ||
|  | \emph default | ||
|  | , we have the following  | ||
|  | \series bold | ||
|  | invariant | ||
|  | \series default | ||
|  | , | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | \log P(x|y)=K_{gc}-E_{gc}(x,y),\label{eq:gc_invariant} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | with the  | ||
|  | \series bold | ||
|  | log-normalization constant | ||
|  | \series default | ||
|  |   | ||
|  | \begin_inset Formula $K_{gc}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  equal to | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | K_{gc}=\log\frac{1}{\sqrt{|2\pi\Sigma|}}\label{eq:log_constant} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and the  | ||
|  | \series bold | ||
|  | error | ||
|  | \series default | ||
|  |   | ||
|  | \begin_inset Formula $E_{gc}(x,y)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  equal to the negative log-density, up to a constant:  | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | E_{gc}(x,y)=\frac{1}{2}\|Rx+Sy-d\|_{\Sigma}^{2}.\label{eq:gc_error} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsubsection* | ||
|  | GaussianMixture | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | A  | ||
|  | \emph on | ||
|  | GaussianMixture | ||
|  | \emph default | ||
|  |  (maybe to be renamed to  | ||
|  | \emph on | ||
|  | GaussianMixtureComponent | ||
|  | \emph default | ||
|  | ) just indexes into a number of  | ||
|  | \emph on | ||
|  | GaussianConditional | ||
|  | \emph default | ||
|  |  instances, that are each properly normalized: | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | P(x|y,m)=P_{m}(x|y). | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | We store one  | ||
|  | \emph on | ||
|  | GaussianConditional | ||
|  | \emph default | ||
|  |   | ||
|  | \begin_inset Formula $P_{m}(x|y)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  for every possible assignment  | ||
|  | \begin_inset Formula $m$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to a set of discrete variables. | ||
|  |  As  | ||
|  | \emph on | ||
|  | GaussianMixture | ||
|  | \emph default | ||
|  |  is a  | ||
|  | \emph on | ||
|  | Conditional | ||
|  | \emph default | ||
|  | , it needs to satisfy the a similar invariant to  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:gc_invariant" | ||
|  | plural "false" | ||
|  | caps "false" | ||
|  | noprefix "false" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | \log P(x|y,m)=K_{gm}-E_{gm}(x,y,m).\label{eq:gm_invariant} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | If we take the log of  | ||
|  | \begin_inset Formula $P(x|y,m)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we get | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | \log P(x|y,m)=\log P_{m}(x|y)=K_{gcm}-E_{gcm}(x,y).\label{eq:gm_log} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Equating  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:gm_invariant" | ||
|  | plural "false" | ||
|  | caps "false" | ||
|  | noprefix "false" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:gm_log" | ||
|  | plural "false" | ||
|  | caps "false" | ||
|  | noprefix "false" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we see that this can be achieved by defining the error  | ||
|  | \begin_inset Formula $E_{gm}(x,y,m)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  as | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | E_{gm}(x,y,m)=E_{gcm}(x,y)+K_{gm}-K_{gcm}\label{eq:gm_error} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | where choose  | ||
|  | \begin_inset Formula $K_{gm}=\max K_{gcm}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , as then the error will always be positive. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Section | ||
|  | Hybrid Factors | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | In GTSAM, we typically condition on known measurements, and factors encode | ||
|  |  the resulting negative log-likelihood of the unknown variables  | ||
|  | \begin_inset Formula $y$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  given the measurements  | ||
|  | \begin_inset Formula $x$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  We review how a Gaussian conditional density is converted into a Gaussian | ||
|  |  factor, and then develop a hybrid version satisfying the correct invariants | ||
|  |  as well. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsubsection* | ||
|  | JacobianFactor | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | A  | ||
|  | \emph on | ||
|  | JacobianFactor | ||
|  | \emph default | ||
|  |  typically results from a  | ||
|  | \emph on | ||
|  | GaussianConditional | ||
|  | \emph default | ||
|  |  by having known values  | ||
|  | \begin_inset Formula $\bar{x}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  for the  | ||
|  | \begin_inset Quotes eld | ||
|  | \end_inset | ||
|  | 
 | ||
|  | measurement | ||
|  | \begin_inset Quotes erd | ||
|  | \end_inset | ||
|  | 
 | ||
|  |   | ||
|  | \begin_inset Formula $x$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | L(y)\propto P(\bar{x}|y)\label{eq:likelihood} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | In GTSAM factors represent the negative log-likelihood  | ||
|  | \begin_inset Formula $E_{jf}(y)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and hence we have | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | E_{jf}(y)=-\log L(y)=C-\log P(\bar{x}|y), | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | with  | ||
|  | \begin_inset Formula $C$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  the log of the proportionality constant in  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:likelihood" | ||
|  | plural "false" | ||
|  | caps "false" | ||
|  | noprefix "false" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  Substituting in  | ||
|  | \begin_inset Formula $\log P(\bar{x}|y)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  from the invariant  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:gc_invariant" | ||
|  | plural "false" | ||
|  | caps "false" | ||
|  | noprefix "false" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we obtain | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | E_{jf}(y)=C-K_{gc}+E_{gc}(\bar{x},y). | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | The  | ||
|  | \emph on | ||
|  | likelihood | ||
|  | \emph default | ||
|  |  function in  | ||
|  | \emph on | ||
|  | GaussianConditional | ||
|  | \emph default | ||
|  |  chooses  | ||
|  | \begin_inset Formula $C=K_{gc}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , and the  | ||
|  | \emph on | ||
|  | JacobianFactor | ||
|  | \emph default | ||
|  |  does not store any constant; it just implements: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | E_{jf}(y)=E_{gc}(\bar{x},y)=\frac{1}{2}\|R\bar{x}+Sy-d\|_{\Sigma}^{2}=\frac{1}{2}\|Ay-b\|_{\Sigma}^{2} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | with  | ||
|  | \begin_inset Formula $A=S$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and  | ||
|  | \begin_inset Formula $b=d-R\bar{x}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Subsubsection* | ||
|  | GaussianMixtureFactor | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | Analogously, a  | ||
|  | \emph on | ||
|  | GaussianMixtureFactor | ||
|  | \emph default | ||
|  |  typically results from a GaussianMixture by having known values  | ||
|  | \begin_inset Formula $\bar{x}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  for the  | ||
|  | \begin_inset Quotes eld | ||
|  | \end_inset | ||
|  | 
 | ||
|  | measurement | ||
|  | \begin_inset Quotes erd | ||
|  | \end_inset | ||
|  | 
 | ||
|  |   | ||
|  | \begin_inset Formula $x$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | L(y,m)\propto P(\bar{x}|y,m). | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | We will similarly implement the negative log-likelihood  | ||
|  | \begin_inset Formula $E_{mf}(y,m)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | E_{mf}(y,m)=-\log L(y,m)=C-\log P(\bar{x}|y,m). | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Since we know the log-density from the invariant  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:gm_invariant" | ||
|  | plural "false" | ||
|  | caps "false" | ||
|  | noprefix "false" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , we obtain | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \log P(\bar{x}|y,m)=K_{gm}-E_{gm}(\bar{x},y,m), | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and hence | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | E_{mf}(y,m)=C+E_{gm}(\bar{x},y,m)-K_{gm}. | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Substituting in  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:gm_error" | ||
|  | plural "false" | ||
|  | caps "false" | ||
|  | noprefix "false" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we finally have an expression where  | ||
|  | \begin_inset Formula $K_{gm}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  canceled out, but we have a dependence on the individual component constants | ||
|  |   | ||
|  | \begin_inset Formula $K_{gcm}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | E_{mf}(y,m)=C+E_{gcm}(\bar{x},y)-K_{gcm}. | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Unfortunately, we can no longer choose  | ||
|  | \begin_inset Formula $C$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  independently from  | ||
|  | \begin_inset Formula $m$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  to make the constant disappear. | ||
|  |  There are two possibilities: | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Enumerate | ||
|  | Implement likelihood to yield both a hybrid factor  | ||
|  | \emph on | ||
|  | and | ||
|  | \emph default | ||
|  |  a discrete factor. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Enumerate | ||
|  | Hide the constant inside the collection of JacobianFactor instances, which | ||
|  |  is the possibility we implement. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | In either case, we implement the mixture factor  | ||
|  | \begin_inset Formula $E_{mf}(y,m)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  as a set of  | ||
|  | \emph on | ||
|  | JacobianFactor | ||
|  | \emph default | ||
|  |  instances  | ||
|  | \begin_inset Formula $E_{mf}(y,m)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | , indexed by the discrete assignment  | ||
|  | \begin_inset Formula $m$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | : | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | E_{mf}(y,m)=E_{jfm}(y)=\frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}. | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | In GTSAM, we define  | ||
|  | \begin_inset Formula $A_{m}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and  | ||
|  | \begin_inset Formula $b_{m}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  strategically to make the  | ||
|  | \emph on | ||
|  | JacobianFactor | ||
|  | \emph default | ||
|  |  compute the constant, as well: | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}=C+E_{gcm}(\bar{x},y)-K_{gcm}. | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | Substituting in the definition  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:gc_error" | ||
|  | plural "false" | ||
|  | caps "false" | ||
|  | noprefix "false" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  for  | ||
|  | \begin_inset Formula $E_{gcm}(\bar{x},y)$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  we need | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | \frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}=C+\frac{1}{2}\|R_{m}\bar{x}+S_{m}y-d_{m}\|_{\Sigma_{m}}^{2}-K_{gcm} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | which can achieved by setting | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | A_{m}=\left[\begin{array}{c} | ||
|  | S_{m}\\ | ||
|  | 0 | ||
|  | \end{array}\right],~b_{m}=\left[\begin{array}{c} | ||
|  | d_{m}-R_{m}\bar{x}\\ | ||
|  | c_{m} | ||
|  | \end{array}\right],~\Sigma_{mfm}=\left[\begin{array}{cc} | ||
|  | \Sigma_{m}\\ | ||
|  |  & 1 | ||
|  | \end{array}\right] | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | and setting the mode-dependent scalar  | ||
|  | \begin_inset Formula $c_{m}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  such that  | ||
|  | \begin_inset Formula $c_{m}^{2}=C-K_{gcm}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  This can be achieved by  | ||
|  | \begin_inset Formula $C=\max K_{gcm}=K_{gm}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and  | ||
|  | \begin_inset Formula $c_{m}=\sqrt{2(C-K_{gcm})}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  |  Note that in case that all constants  | ||
|  | \begin_inset Formula $K_{gcm}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  are equal, we can just use  | ||
|  | \begin_inset Formula $C=K_{gm}$ | ||
|  | \end_inset | ||
|  | 
 | ||
|  |  and | ||
|  | \begin_inset Formula  | ||
|  | \[ | ||
|  | A_{m}=S_{m},~b_{m}=d_{m}-R_{m}\bar{x},~\Sigma_{mfm}=\Sigma_{m} | ||
|  | \] | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | as before. | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \begin_layout Standard | ||
|  | In summary, we have | ||
|  | \begin_inset Formula  | ||
|  | \begin{equation} | ||
|  | E_{mf}(y,m)=\frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}=E_{gcm}(\bar{x},y)+K_{gm}-K_{gcm}.\label{eq:mf_invariant} | ||
|  | \end{equation} | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | which is identical to the GaussianMixture error  | ||
|  | \begin_inset CommandInset ref | ||
|  | LatexCommand eqref | ||
|  | reference "eq:gm_error" | ||
|  | plural "false" | ||
|  | caps "false" | ||
|  | noprefix "false" | ||
|  | 
 | ||
|  | \end_inset | ||
|  | 
 | ||
|  | . | ||
|  | \end_layout | ||
|  | 
 | ||
|  | \end_body | ||
|  | \end_document |