2020-04-09 21:49:34 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								/* ----------------------------------------------------------------------------
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 * Atlanta, Georgia 30332-0415
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 * All Rights Reserved
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 * See LICENSE for the license information
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 * -------------------------------------------------------------------------- */
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								/**
							 | 
						
					
						
							
								
									
										
										
										
											2020-04-10 01:24:32 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								 * @file    FisheyeExample.cpp
							 | 
						
					
						
							
								
									
										
										
										
											2020-04-09 21:49:34 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 * @brief   A visualSLAM example for the structure-from-motion problem on a
							 | 
						
					
						
							
								
									
										
										
										
											2020-05-10 07:08:17 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								 * simulated dataset. This version uses a fisheye camera model and a GaussNewton
							 | 
						
					
						
							
								
									
										
										
										
											2020-04-09 21:49:34 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 * solver to solve the graph in one batch
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 * @author  ghaggin
							 | 
						
					
						
							
								
									
										
										
										
											2020-04-10 01:24:32 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								 * @Date    Apr 9,2020
							 | 
						
					
						
							
								
									
										
										
										
											2020-04-09 21:49:34 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 */
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								/**
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 * A structure-from-motion example with landmarks
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 *  - The landmarks form a 10 meter cube
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 *  - The robot rotates around the landmarks, always facing towards the cube
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								 */
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								// For loading the data
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include "SFMdata.h"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								// Camera observations of landmarks will be stored as Point2 (x, y).
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include <gtsam/geometry/Point2.h>
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								// Each variable in the system (poses and landmarks) must be identified with a
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								// unique key. We can either use simple integer keys (1, 2, 3, ...) or symbols
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								// (X1, X2, L1). Here we will use Symbols
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include <gtsam/inference/Symbol.h>
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								// Use GaussNewtonOptimizer to solve graph
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include <gtsam/nonlinear/NonlinearFactorGraph.h>
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include <gtsam/nonlinear/Values.h>
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								// In GTSAM, measurement functions are represented as 'factors'. Several common
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								// factors have been provided with the library for solving robotics/SLAM/Bundle
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								// Adjustment problems. Here we will use Projection factors to model the
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								// camera's landmark observations. Also, we will initialize the robot at some
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								// location using a Prior factor.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include <gtsam/geometry/Cal3Fisheye.h>
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include <gtsam/slam/PriorFactor.h>
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include <gtsam/slam/ProjectionFactor.h>
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include <fstream>
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								#include <vector>
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								using namespace std;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								using namespace gtsam;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2020-05-10 07:08:17 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								using symbol_shorthand::L;  // for landmarks
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								using symbol_shorthand::X;  // for poses
							 | 
						
					
						
							
								
									
										
										
										
											2020-04-09 21:49:34 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2020-05-10 07:08:17 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								/* ************************************************************************* */
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								int main(int argc, char *argv[]) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  // Define the camera calibration parameters
							 | 
						
					
						
							
								
									
										
										
										
											2023-01-18 06:05:12 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  auto K = std::make_shared<Cal3Fisheye>(
							 | 
						
					
						
							
								
									
										
										
										
											2020-05-10 07:08:17 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								      278.66, 278.48, 0.0, 319.75, 241.96, -0.013721808247486035,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      0.020727425669427896, -0.012786476702685545, 0.0025242267320687625);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  // Define the camera observation noise model, 1 pixel stddev
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  auto measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  // Create the set of ground-truth landmarks
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  const vector<Point3> points = createPoints();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  // Create the set of ground-truth poses
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  const vector<Pose3> poses = createPoses();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  // Create a Factor Graph and Values to hold the new data
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  NonlinearFactorGraph graph;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  Values initialEstimate;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  // Add a prior on pose x0, 0.1 rad on roll,pitch,yaw, and 30cm std on x,y,z
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  auto posePrior = noiseModel::Diagonal::Sigmas(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      (Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished());
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  graph.emplace_shared<PriorFactor<Pose3>>(X(0), poses[0], posePrior);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  // Add a prior on landmark l0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  auto pointPrior = noiseModel::Isotropic::Sigma(3, 0.1);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  graph.emplace_shared<PriorFactor<Point3>>(L(0), points[0], pointPrior);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  // Add initial guesses to all observed landmarks
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  // Intentionally initialize the variables off from the ground truth
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  static const Point3 kDeltaPoint(-0.25, 0.20, 0.15);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  for (size_t j = 0; j < points.size(); ++j)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    initialEstimate.insert<Point3>(L(j), points[j] + kDeltaPoint);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  // Loop over the poses, adding the observations to the graph
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  for (size_t i = 0; i < poses.size(); ++i) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    // Add factors for each landmark observation
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    for (size_t j = 0; j < points.size(); ++j) {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      PinholeCamera<Cal3Fisheye> camera(poses[i], *K);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      Point2 measurement = camera.project(points[j]);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								      graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3Fisheye>>(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								          measurement, measurementNoise, X(i), L(j), K);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    }
							 | 
						
					
						
							
								
									
										
										
										
											2020-04-09 21:49:34 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2020-05-10 07:08:17 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    // Add an initial guess for the current pose
							 | 
						
					
						
							
								
									
										
										
										
											2020-04-09 21:49:34 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    // Intentionally initialize the variables off from the ground truth
							 | 
						
					
						
							
								
									
										
										
										
											2020-05-10 07:08:17 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								    static const Pose3 kDeltaPose(Rot3::Rodrigues(-0.1, 0.2, 0.25),
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								                                  Point3(0.05, -0.10, 0.20));
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								    initialEstimate.insert(X(i), poses[i] * kDeltaPose);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  }
							 | 
						
					
						
							
								
									
										
										
										
											2020-04-09 21:49:34 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2020-05-10 07:08:17 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  GaussNewtonParams params;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  params.setVerbosity("TERMINATION");
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  params.maxIterations = 10000;
							 | 
						
					
						
							
								
									
										
										
										
											2020-04-09 21:49:34 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2020-05-10 07:08:17 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  std::cout << "Optimizing the factor graph" << std::endl;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  GaussNewtonOptimizer optimizer(graph, initialEstimate, params);
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  Values result = optimizer.optimize();
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  std::cout << "Optimization complete" << std::endl;
							 | 
						
					
						
							
								
									
										
										
										
											2020-04-09 21:49:34 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2020-05-10 07:08:17 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  std::cout << "initial error=" << graph.error(initialEstimate) << std::endl;
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								  std::cout << "final error=" << graph.error(result) << std::endl;
							 | 
						
					
						
							
								
									
										
										
										
											2020-04-09 21:49:34 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2021-12-21 23:17:36 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  graph.saveGraph("examples/vio_batch.dot", result);
							 | 
						
					
						
							
								
									
										
										
										
											2020-04-09 21:49:34 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2020-05-10 07:08:17 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
							
								  return 0;
							 | 
						
					
						
							
								
									
										
										
										
											2020-04-09 21:49:34 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
							
								}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
							
								/* ************************************************************************* */
							 |