| 
									
										
										
										
											2012-06-23 03:36:49 +08:00
										 |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
					
						
							|  |  |  | % GTSAM Copyright 2010, Georgia Tech Research Corporation, | 
					
						
							|  |  |  | % Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  | % All Rights Reserved | 
					
						
							|  |  |  | % Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | % | 
					
						
							|  |  |  | % See LICENSE for the license information | 
					
						
							|  |  |  | % | 
					
						
							|  |  |  | % @brief Simple robotics example using the pre-built planar SLAM domain | 
					
						
							|  |  |  | % @author Alex Cunningham | 
					
						
							|  |  |  | % @author Frank Dellaert | 
					
						
							|  |  |  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Assumptions | 
					
						
							|  |  |  | %  - All values are axis aligned | 
					
						
							|  |  |  | %  - Robot poses are facing along the X axis (horizontal, to the right in images) | 
					
						
							|  |  |  | %  - We have bearing and range information for measurements | 
					
						
							|  |  |  | %  - We have full odometry for measurements | 
					
						
							|  |  |  | %  - The robot and landmarks are on a grid, moving 2 meters each step | 
					
						
							|  |  |  | %  - Landmarks are 2 meters away from the robot trajectory | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Create keys for variables | 
					
						
							|  |  |  | i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3); | 
					
						
							|  |  |  | j1 = symbol('l',1); j2 = symbol('l',2); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Create graph container and add factors to it | 
					
						
							|  |  |  | graph = planarSLAMGraph; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Add prior | 
					
						
							|  |  |  | priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin | 
					
						
							|  |  |  | priorNoise = gtsamnoiseModelDiagonal_Sigmas([0.3; 0.3; 0.1]); | 
					
						
							| 
									
										
										
										
											2012-06-24 10:48:12 +08:00
										 |  |  | graph.addPosePrior(i1, priorMean, priorNoise); % add directly to graph | 
					
						
							| 
									
										
										
										
											2012-06-23 03:36:49 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | %% Add odometry | 
					
						
							|  |  |  | odometry = gtsamPose2(2.0, 0.0, 0.0); | 
					
						
							|  |  |  | odometryNoise = gtsamnoiseModelDiagonal_Sigmas([0.2; 0.2; 0.1]); | 
					
						
							| 
									
										
										
										
											2012-06-24 10:48:12 +08:00
										 |  |  | graph.addRelativePose(i1, i2, odometry, odometryNoise); | 
					
						
							|  |  |  | graph.addRelativePose(i2, i3, odometry, odometryNoise); | 
					
						
							| 
									
										
										
										
											2012-06-23 03:36:49 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | %% Add bearing/range measurement factors | 
					
						
							|  |  |  | degrees = pi/180; | 
					
						
							|  |  |  | noiseModel = gtsamnoiseModelDiagonal_Sigmas([0.1; 0.2]); | 
					
						
							|  |  |  | graph.addBearingRange(i1, j1, gtsamRot2(45*degrees), sqrt(4+4), noiseModel); | 
					
						
							|  |  |  | graph.addBearingRange(i2, j1, gtsamRot2(90*degrees), 2, noiseModel); | 
					
						
							|  |  |  | graph.addBearingRange(i3, j2, gtsamRot2(90*degrees), 2, noiseModel); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Initialize to noisy points | 
					
						
							|  |  |  | initialEstimate = planarSLAMValues; | 
					
						
							|  |  |  | initialEstimate.insertPose(i1, gtsamPose2(0.5, 0.0, 0.2)); | 
					
						
							|  |  |  | initialEstimate.insertPose(i2, gtsamPose2(2.3, 0.1,-0.2)); | 
					
						
							|  |  |  | initialEstimate.insertPose(i3, gtsamPose2(4.1, 0.1, 0.1)); | 
					
						
							|  |  |  | initialEstimate.insertPoint(j1, gtsamPoint2(1.8, 2.1)); | 
					
						
							|  |  |  | initialEstimate.insertPoint(j2, gtsamPoint2(4.1, 1.8)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd | 
					
						
							| 
									
										
										
										
											2012-06-24 10:48:12 +08:00
										 |  |  | result = graph.optimize(initialEstimate,0); | 
					
						
							| 
									
										
										
										
											2012-06-23 03:36:49 +08:00
										 |  |  | marginals = graph.marginals(result); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | %% Check first pose and point equality | 
					
						
							|  |  |  | pose_1 = result.pose(symbol('x',1)); | 
					
						
							|  |  |  | marginals.marginalCovariance(symbol('x',1)); | 
					
						
							|  |  |  | CHECK('pose_1.equals(gtsamPose2,1e-4)',pose_1.equals(gtsamPose2,1e-4)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | point_1 = result.point(symbol('l',1)); | 
					
						
							|  |  |  | marginals.marginalCovariance(symbol('l',1)); | 
					
						
							|  |  |  | CHECK('point_1.equals(gtsamPoint2(2,2),1e-4)',point_1.equals(gtsamPoint2(2,2),1e-4)); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 |