413 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			413 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
|  | /**
 | ||
|  |  * @file    testRot3.cpp | ||
|  |  * @brief   Unit tests for Rot3 class | ||
|  |  * @author  Alireza Fathi | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <CppUnitLite/TestHarness.h>
 | ||
|  | #include <boost/math/constants/constants.hpp>
 | ||
|  | #include "numericalDerivative.h"
 | ||
|  | #include "Point3.h"
 | ||
|  | #include "Rot3.h"
 | ||
|  | 
 | ||
|  | using namespace gtsam; | ||
|  | 
 | ||
|  | Rot3 R = rodriguez(0.1, 0.4, 0.2); | ||
|  | Point3 P(0.2, 0.7, -2.0); | ||
|  | double error = 1e-9, epsilon = 0.001; | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, constructor) | ||
|  | { | ||
|  | 	Rot3 expected(eye(3, 3)); | ||
|  | 	Vector r1(3), r2(3), r3(3); | ||
|  | 	r1(0) = 1; | ||
|  | 	r1(1) = 0; | ||
|  | 	r1(2) = 0; | ||
|  | 	r2(0) = 0; | ||
|  | 	r2(1) = 1; | ||
|  | 	r2(2) = 0; | ||
|  | 	r3(0) = 0; | ||
|  | 	r3(1) = 0; | ||
|  | 	r3(2) = 1; | ||
|  | 	Rot3 actual(r1, r2, r3); | ||
|  | 	CHECK(assert_equal(actual,expected)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, constructor2) | ||
|  | { | ||
|  | 	Matrix R = Matrix_(3, 3, 11., 12., 13., 21., 22., 23., 31., 32., 33.); | ||
|  | 	Rot3 actual(R); | ||
|  | 	Rot3 expected(11, 12, 13, 21, 22, 23, 31, 32, 33); | ||
|  | 	CHECK(assert_equal(actual,expected)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, constructor3) | ||
|  | { | ||
|  | 	Rot3 expected(1, 2, 3, 4, 5, 6, 7, 8, 9); | ||
|  | 	Point3 r1(1, 4, 7), r2(2, 5, 8), r3(3, 6, 9); | ||
|  | 	CHECK(assert_equal(Rot3(r1,r2,r3),expected)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, transpose) | ||
|  | { | ||
|  | 	Rot3 R(1, 2, 3, 4, 5, 6, 7, 8, 9); | ||
|  | 	Point3 r1(1, 2, 3), r2(4, 5, 6), r3(7, 8, 9); | ||
|  | 	CHECK(assert_equal(inverse(R),Rot3(r1,r2,r3))); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, equals) | ||
|  | { | ||
|  | 	CHECK(R.equals(R)); | ||
|  | 	Rot3 zero; | ||
|  | 	CHECK(!R.equals(zero)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | // Notice this uses J^2 whereas fast uses w*w', and has cos(t)*I + ....
 | ||
|  | Rot3 slow_but_correct_rodriguez(const Vector& w) { | ||
|  | 	double t = norm_2(w); | ||
|  | 	Matrix J = skewSymmetric(w / t); | ||
|  | 	if (t < 1e-5) return Rot3(); | ||
|  | 	Matrix R = eye(3) + sin(t) * J + (1.0 - cos(t)) * (J * J); | ||
|  | 	return R; | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, rodriguez) | ||
|  | { | ||
|  | 	Rot3 R1 = rodriguez(epsilon, 0, 0); | ||
|  | 	Vector w = Vector_(3, epsilon, 0., 0.); | ||
|  | 	Rot3 R2 = slow_but_correct_rodriguez(w); | ||
|  | 	CHECK(assert_equal(R2,R1)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, rodriguez2) | ||
|  | { | ||
|  | 	Vector axis = Vector_(3,0.,1.,0.); // rotation around Y
 | ||
|  | 	double angle = 3.14 / 4.0; | ||
|  | 	Rot3 actual = rodriguez(axis, angle); | ||
|  | 	Rot3 expected(0.707388, 0, 0.706825, | ||
|  | 			                 0, 1,        0, | ||
|  | 			         -0.706825, 0, 0.707388); | ||
|  | 	CHECK(assert_equal(expected,actual,1e-5)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, rodriguez3) | ||
|  | { | ||
|  | 	Vector w = Vector_(3, 0.1, 0.2, 0.3); | ||
|  | 	Rot3 R1 = rodriguez(w / norm_2(w), norm_2(w)); | ||
|  | 	Rot3 R2 = slow_but_correct_rodriguez(w); | ||
|  | 	CHECK(assert_equal(R2,R1)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, rodriguez4) | ||
|  | { | ||
|  | 	Vector axis = Vector_(3,0.,0.,1.); // rotation around Z
 | ||
|  | 	double angle = M_PI_2; | ||
|  | 	Rot3 actual = rodriguez(axis, angle); | ||
|  | 	double c=cos(angle),s=sin(angle); | ||
|  | 	Rot3 expected(c,-s, 0, | ||
|  | 			          s, c, 0, | ||
|  | 			          0, 0, 1); | ||
|  | 	CHECK(assert_equal(expected,actual,1e-5)); | ||
|  | 	CHECK(assert_equal(slow_but_correct_rodriguez(axis*angle),actual,1e-5)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, expmap) | ||
|  | { | ||
|  | 	Vector v(3); | ||
|  | 	fill(v.begin(), v.end(), 0); | ||
|  | 	CHECK(assert_equal(expmap(R,v), R)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST(Rot3, log) | ||
|  | { | ||
|  | 	Vector w1 = Vector_(3, 0.1, 0.0, 0.0); | ||
|  | 	Rot3 R1 = rodriguez(w1); | ||
|  | 	CHECK(assert_equal(w1, logmap(R1))); | ||
|  | 
 | ||
|  | 	Vector w2 = Vector_(3, 0.0, 0.1, 0.0); | ||
|  | 	Rot3 R2 = rodriguez(w2); | ||
|  | 	CHECK(assert_equal(w2, logmap(R2))); | ||
|  | 
 | ||
|  | 	Vector w3 = Vector_(3, 0.0, 0.0, 0.1); | ||
|  | 	Rot3 R3 = rodriguez(w3); | ||
|  | 	CHECK(assert_equal(w3, logmap(R3))); | ||
|  | 
 | ||
|  | 	Vector w = Vector_(3, 0.1, 0.4, 0.2); | ||
|  | 	Rot3 R = rodriguez(w); | ||
|  | 	CHECK(assert_equal(w, logmap(R))); | ||
|  | 
 | ||
|  | 	Vector w5 = Vector_(3, 0.0, 0.0, 0.0); | ||
|  | 	Rot3 R5 = rodriguez(w5); | ||
|  | 	CHECK(assert_equal(w5, logmap(R5))); | ||
|  | 
 | ||
|  | 	Vector w6 = Vector_(3, boost::math::constants::pi<double>(), 0.0, 0.0); | ||
|  | 	Rot3 R6 = rodriguez(w6); | ||
|  | 	CHECK(assert_equal(w6, logmap(R6))); | ||
|  | 
 | ||
|  | 	Vector w7 = Vector_(3, 0.0, boost::math::constants::pi<double>(), 0.0); | ||
|  | 	Rot3 R7 = rodriguez(w7); | ||
|  | 	CHECK(assert_equal(w7, logmap(R7))); | ||
|  | 
 | ||
|  | 	Vector w8 = Vector_(3, 0.0, 0.0, boost::math::constants::pi<double>()); | ||
|  | 	Rot3 R8 = rodriguez(w8); | ||
|  | 	CHECK(assert_equal(w8, logmap(R8))); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST(Rot3, manifold) | ||
|  | { | ||
|  | 	Rot3 gR1 = rodriguez(0.1, 0.4, 0.2); | ||
|  | 	Rot3 gR2 = rodriguez(0.3, 0.1, 0.7); | ||
|  | 	Rot3 origin; | ||
|  | 
 | ||
|  | 	// log behaves correctly
 | ||
|  | 	Vector d12 = logmap(gR1, gR2); | ||
|  | 	CHECK(assert_equal(gR2, expmap(gR1,d12))); | ||
|  | 	CHECK(assert_equal(gR2, gR1*expmap<Rot3>(d12))); | ||
|  | 	Vector d21 = logmap(gR2, gR1); | ||
|  | 	CHECK(assert_equal(gR1, expmap(gR2,d21))); | ||
|  | 	CHECK(assert_equal(gR1, gR2*expmap<Rot3>(d21))); | ||
|  | 
 | ||
|  | 	// Check that log(t1,t2)=-log(t2,t1)
 | ||
|  | 	CHECK(assert_equal(d12,-d21)); | ||
|  | 
 | ||
|  | 	// lines in canonical coordinates correspond to Abelian subgroups in SO(3)
 | ||
|  | 	Vector d = Vector_(3, 0.1, 0.2, 0.3); | ||
|  | 	// exp(-d)=inverse(exp(d))
 | ||
|  | 	CHECK(assert_equal(expmap<Rot3>(-d),inverse(expmap<Rot3>(d)))); | ||
|  | 	// exp(5d)=exp(2*d+3*d)=exp(2*d)exp(3*d)=exp(3*d)exp(2*d)
 | ||
|  | 	Rot3 R2 = expmap<Rot3> (2 * d); | ||
|  | 	Rot3 R3 = expmap<Rot3> (3 * d); | ||
|  | 	Rot3 R5 = expmap<Rot3> (5 * d); | ||
|  | 	CHECK(assert_equal(R5,R2*R3)); | ||
|  | 	CHECK(assert_equal(R5,R3*R2)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | class AngularVelocity: public Point3 { | ||
|  | public: | ||
|  | 	AngularVelocity(const Point3& p) : | ||
|  | 		Point3(p) { | ||
|  | 	} | ||
|  | 	AngularVelocity(double wx, double wy, double wz) : | ||
|  | 		Point3(wx, wy, wz) { | ||
|  | 	} | ||
|  | }; | ||
|  | 
 | ||
|  | AngularVelocity bracket(const AngularVelocity& X, const AngularVelocity& Y) { | ||
|  | 	return cross(X, Y); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST(Rot3, BCH) | ||
|  | { | ||
|  | 	// Approximate exmap by BCH formula
 | ||
|  | 	AngularVelocity w1(0.2, -0.1, 0.1); | ||
|  | 	AngularVelocity w2(0.01, 0.02, -0.03); | ||
|  | 	Rot3 R1 = expmap<Rot3> (w1.vector()), R2 = expmap<Rot3> (w2.vector()); | ||
|  | 	Rot3 R3 = R1 * R2; | ||
|  | 	Vector expected = logmap(R3); | ||
|  | 	Vector actual = BCH(w1, w2).vector(); | ||
|  | 	CHECK(assert_equal(expected, actual,1e-5)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | // rotate derivatives
 | ||
|  | 
 | ||
|  | TEST( Rot3, Drotate1) | ||
|  | { | ||
|  | 	Matrix actualDrotate1 = Drotate1(R, P); | ||
|  | 	Matrix numerical = numericalDerivative21(rotate, R, P); | ||
|  | 	CHECK(assert_equal(numerical,actualDrotate1,error)); | ||
|  | } | ||
|  | 
 | ||
|  | TEST( Rot3, Drotate1_) | ||
|  | { | ||
|  | 	Matrix actualDrotate1 = Drotate1(inverse(R), P); | ||
|  | 	Matrix numerical = numericalDerivative21(rotate, inverse(R), P); | ||
|  | 	CHECK(assert_equal(numerical,actualDrotate1,error)); | ||
|  | } | ||
|  | 
 | ||
|  | TEST( Rot3, Drotate2_DNrotate2) | ||
|  | { | ||
|  | 	Matrix actualDrotate2 = Drotate2(R); | ||
|  | 	Matrix numerical = numericalDerivative22(rotate, R, P); | ||
|  | 	CHECK(assert_equal(numerical,actualDrotate2,error)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, unrotate) | ||
|  | { | ||
|  | 	Point3 w = R * P; | ||
|  | 	Matrix H1,H2; | ||
|  | 	Point3 actual = unrotate(R,w,H1,H2); | ||
|  | 	CHECK(assert_equal(P,actual)); | ||
|  | 
 | ||
|  | 	Matrix numerical1 = numericalDerivative21(unrotate, R, w); | ||
|  | 	CHECK(assert_equal(numerical1,H1,error)); | ||
|  | 
 | ||
|  | 	Matrix numerical2 = numericalDerivative22(unrotate, R, w); | ||
|  | 	CHECK(assert_equal(numerical2,H2,error)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, compose ) | ||
|  | { | ||
|  | 	Rot3 R1 = rodriguez(0.1, 0.2, 0.3); | ||
|  | 	Rot3 R2 = rodriguez(0.2, 0.3, 0.5); | ||
|  | 
 | ||
|  | 	Rot3 expected = R1 * R2; | ||
|  | 	Rot3 actual = compose(R1, R2); | ||
|  | 	CHECK(assert_equal(expected,actual)); | ||
|  | 
 | ||
|  | 	Matrix numericalH1 = numericalDerivative21<Rot3, Rot3, Rot3> (compose, R1, | ||
|  | 			R2, 1e-5); | ||
|  | 	Matrix actualH1 = Dcompose1(R1, R2); | ||
|  | 	CHECK(assert_equal(numericalH1,actualH1)); | ||
|  | 
 | ||
|  | 	Matrix actualH2 = Dcompose2(R1, R2); | ||
|  | 	Matrix numericalH2 = numericalDerivative22<Rot3, Rot3, Rot3> (compose, R1, | ||
|  | 			R2, 1e-5); | ||
|  | 	CHECK(assert_equal(numericalH2,actualH2)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | 
 | ||
|  | TEST( Rot3, inverse ) | ||
|  | { | ||
|  | 	Rot3 R = rodriguez(0.1, 0.2, 0.3); | ||
|  | 
 | ||
|  | 	Rot3 I; | ||
|  | 	CHECK(assert_equal(I,R*inverse(R))); | ||
|  | 	CHECK(assert_equal(I,inverse(R)*R)); | ||
|  | 
 | ||
|  | 	Matrix numericalH = numericalDerivative11<Rot3, Rot3> (inverse, R, 1e-5); | ||
|  | 	Matrix actualH = Dinverse(R); | ||
|  | 	CHECK(assert_equal(numericalH,actualH)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, between ) | ||
|  | { | ||
|  | 	Rot3 R = rodriguez(0.1, 0.4, 0.2); | ||
|  | 	Rot3 origin; | ||
|  | 	CHECK(assert_equal(R, between(origin,R))); | ||
|  | 	CHECK(assert_equal(inverse(R), between(R,origin))); | ||
|  | 
 | ||
|  | 	Rot3 R1 = rodriguez(0.1, 0.2, 0.3); | ||
|  | 	Rot3 R2 = rodriguez(0.2, 0.3, 0.5); | ||
|  | 
 | ||
|  | 	Rot3 expected = inverse(R1) * R2; | ||
|  | 	Rot3 actual = between(R1, R2); | ||
|  | 	CHECK(assert_equal(expected,actual)); | ||
|  | 
 | ||
|  | 	Matrix numericalH1 = numericalDerivative21(between<Rot3> , R1, R2, 1e-5); | ||
|  | 	Matrix actualH1 = Dbetween1(R1, R2); | ||
|  | 	CHECK(assert_equal(numericalH1,actualH1)); | ||
|  | 
 | ||
|  | 	Matrix actualH2 = Dbetween2(R1, R2); | ||
|  | 	Matrix numericalH2 = numericalDerivative22(between<Rot3> , R1, R2, 1e-5); | ||
|  | 	CHECK(assert_equal(numericalH2,actualH2)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, xyz ) | ||
|  | { | ||
|  | 	double t = 0.1, st = sin(t), ct = cos(t); | ||
|  | 
 | ||
|  | 	// Make sure all counterclockwise
 | ||
|  | 	// Diagrams below are all from from unchanging axis
 | ||
|  | 
 | ||
|  | 	// z
 | ||
|  | 	// |   * Y=(ct,st)
 | ||
|  | 	// x----y
 | ||
|  | 	Rot3 expected1(1, 0, 0, 0, ct, -st, 0, st, ct); | ||
|  | 	CHECK(assert_equal(expected1,Rot3::Rx(t))); | ||
|  | 
 | ||
|  | 	// x
 | ||
|  | 	// |   * Z=(ct,st)
 | ||
|  | 	// y----z
 | ||
|  | 	Rot3 expected2(ct, 0, st, 0, 1, 0, -st, 0, ct); | ||
|  | 	CHECK(assert_equal(expected2,Rot3::Ry(t))); | ||
|  | 
 | ||
|  | 	// y
 | ||
|  | 	// |   X=* (ct,st)
 | ||
|  | 	// z----x
 | ||
|  | 	Rot3 expected3(ct, -st, 0, st, ct, 0, 0, 0, 1); | ||
|  | 	CHECK(assert_equal(expected3,Rot3::Rz(t))); | ||
|  | 
 | ||
|  | 	// Check compound rotation
 | ||
|  | 	Rot3 expected = Rot3::Rz(0.3) * Rot3::Ry(0.2) * Rot3::Rx(0.1); | ||
|  | 	CHECK(assert_equal(expected,Rot3::RzRyRx(0.1,0.2,0.3))); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, yaw_pitch_roll ) | ||
|  | { | ||
|  | 	double t = 0.1; | ||
|  | 
 | ||
|  | 	// yaw is around z axis
 | ||
|  | 	CHECK(assert_equal(Rot3::Rz(t),Rot3::yaw(t))); | ||
|  | 
 | ||
|  | 	// pitch is around y axis
 | ||
|  | 	CHECK(assert_equal(Rot3::Ry(t),Rot3::pitch(t))); | ||
|  | 
 | ||
|  | 	// roll is around x axis
 | ||
|  | 	CHECK(assert_equal(Rot3::Rx(t),Rot3::roll(t))); | ||
|  | 
 | ||
|  | 	// Check compound rotation
 | ||
|  | 	Rot3 expected = Rot3::yaw(0.1) * Rot3::pitch(0.2) * Rot3::roll(0.3); | ||
|  | 	CHECK(assert_equal(expected,Rot3::ypr(0.1,0.2,0.3))); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Rot3, RQ) | ||
|  | { | ||
|  | 	// Try RQ on a pure rotation
 | ||
|  | 	Matrix actualK; | ||
|  | 	Vector actual; | ||
|  | 	boost::tie(actualK, actual) = RQ(R.matrix()); | ||
|  | 	Vector expected = Vector_(3, 0.14715, 0.385821, 0.231671); | ||
|  | 	CHECK(assert_equal(eye(3),actualK)); | ||
|  | 	CHECK(assert_equal(expected,actual,1e-6)); | ||
|  | 
 | ||
|  | 	// Try using xyz call, asserting that Rot3::RzRyRx(x,y,z).xyz()==[x;y;z]
 | ||
|  | 	CHECK(assert_equal(expected,R.xyz(),1e-6)); | ||
|  | 	CHECK(assert_equal(Vector_(3,0.1,0.2,0.3),Rot3::RzRyRx(0.1,0.2,0.3).xyz())); | ||
|  | 
 | ||
|  | 	// Try using ypr call, asserting that Rot3::ypr(y,p,r).ypr()==[y;p;r]
 | ||
|  | 	CHECK(assert_equal(Vector_(3,0.1,0.2,0.3),Rot3::ypr(0.1,0.2,0.3).ypr())); | ||
|  | 
 | ||
|  | 	// Try ypr for pure yaw-pitch-roll matrices
 | ||
|  | 	CHECK(assert_equal(Vector_(3,0.1,0.0,0.0),Rot3::yaw (0.1).ypr())); | ||
|  | 	CHECK(assert_equal(Vector_(3,0.0,0.1,0.0),Rot3::pitch(0.1).ypr())); | ||
|  | 	CHECK(assert_equal(Vector_(3,0.0,0.0,0.1),Rot3::roll (0.1).ypr())); | ||
|  | 
 | ||
|  | 	// Try RQ to recover calibration from 3*3 sub-block of projection matrix
 | ||
|  | 	Matrix K = Matrix_(3, 3, 500.0, 0.0, 320.0, 0.0, 500.0, 240.0, 0.0, 0.0, 1.0); | ||
|  | 	Matrix A = K * R.matrix(); | ||
|  | 	boost::tie(actualK, actual) = RQ(A); | ||
|  | 	CHECK(assert_equal(K,actualK)); | ||
|  | 	CHECK(assert_equal(expected,actual,1e-6)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | int main() { | ||
|  | 	TestResult tr; | ||
|  | 	return TestRegistry::runAllTests(tr); | ||
|  | } | ||
|  | /* ************************************************************************* */ | ||
|  | 
 |