237 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			237 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
|  | /**
 | ||
|  |  * @file    Rot3.cpp | ||
|  |  * @brief   Rotation (internal: 3*3 matrix representation*) | ||
|  |  * @author  Alireza Fathi | ||
|  |  * @author  Christian Potthast | ||
|  |  * @author  Frank Dellaert | ||
|  |  */ | ||
|  | 
 | ||
|  | #include "Rot3.h"
 | ||
|  | #include "Lie-inl.h"
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | 
 | ||
|  | namespace gtsam { | ||
|  | 
 | ||
|  |   /** Explicit instantiation of base class to export members */ | ||
|  |   INSTANTIATE_LIE(Rot3); | ||
|  | 
 | ||
|  | 	static const Matrix I3 = eye(3); | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  | 	// static member functions to construct rotations
 | ||
|  | 
 | ||
|  |   Rot3 Rot3::Rx(double t) { | ||
|  |   	double st = sin(t), ct = cos(t); | ||
|  |   	return Rot3( | ||
|  |   			1,  0,  0, | ||
|  |   			0, ct,-st, | ||
|  |   			0, st, ct); | ||
|  |   } | ||
|  | 
 | ||
|  |   Rot3 Rot3::Ry(double t) { | ||
|  |   	double st = sin(t), ct = cos(t); | ||
|  |   	return Rot3( | ||
|  |   			 ct, 0, st, | ||
|  |   			  0, 1,  0, | ||
|  |   			-st, 0, ct); | ||
|  |   } | ||
|  | 
 | ||
|  |   Rot3 Rot3::Rz(double t) { | ||
|  |   	double st = sin(t), ct = cos(t); | ||
|  |   	return Rot3( | ||
|  |   			ct,-st, 0, | ||
|  |   			st, ct, 0, | ||
|  |   			 0,  0, 1); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Considerably faster than composing matrices above !
 | ||
|  |   Rot3 Rot3::RzRyRx(double x, double y, double z) { | ||
|  |   	double cx=cos(x),sx=sin(x); | ||
|  |   	double cy=cos(y),sy=sin(y); | ||
|  |   	double cz=cos(z),sz=sin(z); | ||
|  |   	double ss_ = sx * sy; | ||
|  |   	double cs_ = cx * sy; | ||
|  |   	double sc_ = sx * cy; | ||
|  |   	double cc_ = cx * cy; | ||
|  |   	double c_s = cx * sz; | ||
|  |   	double s_s = sx * sz; | ||
|  | 		double _cs = cy * sz; | ||
|  |   	double _cc = cy * cz; | ||
|  | 		double s_c = sx * cz; | ||
|  | 		double c_c = cx * cz; | ||
|  | 		double ssc = ss_ * cz, csc = cs_ * cz, sss = ss_ * sz, css = cs_ * sz; | ||
|  |   	return Rot3( | ||
|  |   			_cc,- c_s + ssc,  s_s + csc, | ||
|  |   			_cs,  c_c + sss, -s_c + css, | ||
|  | 				-sy,        sc_,        cc_ | ||
|  |   			); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   bool Rot3::equals(const Rot3 & R, double tol) const { | ||
|  |     return equal_with_abs_tol(matrix(), R.matrix(), tol); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   Matrix Rot3::matrix() const { | ||
|  |     double r[] = { r1_.x(), r2_.x(), r3_.x(), | ||
|  |         r1_.y(), r2_.y(), r3_.y(), | ||
|  |         r1_.z(), r2_.z(), r3_.z() }; | ||
|  |     return Matrix_(3,3, r); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   Matrix Rot3::transpose() const { | ||
|  |     double r[] = { r1_.x(), r1_.y(), r1_.z(), | ||
|  |         r2_.x(), r2_.y(), r2_.z(), | ||
|  |         r3_.x(), r3_.y(), r3_.z()}; | ||
|  |     return Matrix_(3,3, r); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   Point3 Rot3::column(int index) const{ | ||
|  |     if(index == 3) | ||
|  |       return r3_; | ||
|  |     else if (index == 2) | ||
|  |       return r2_; | ||
|  |     else | ||
|  |       return r1_; // default returns r1
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   Vector Rot3::xyz() const { | ||
|  |     Matrix I;Vector q; | ||
|  |     boost::tie(I,q)=RQ(matrix()); | ||
|  |     return q; | ||
|  |   } | ||
|  | 
 | ||
|  |   Vector Rot3::ypr() const { | ||
|  |   	Vector q = xyz(); | ||
|  |     return Vector_(3,q(2),q(1),q(0)); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   // Log map at identity - return the canonical coordinates of this rotation
 | ||
|  |   inline Vector logmap(const Rot3& R) { | ||
|  |     double tr = R.r1().x()+R.r2().y()+R.r3().z(); | ||
|  |     if (fabs(tr-3.0) < 1e-10) {   // when theta = 0, +-2pi, +-4pi, etc.
 | ||
|  |       return zero(3); | ||
|  |     } else if (tr==-1.0) { // when theta = +-pi, +-3pi, +-5pi, etc.
 | ||
|  |       if(R.r3().z() != -1.0) | ||
|  |         return (boost::math::constants::pi<double>() / sqrt(2.0+2.0*R.r3().z())) * | ||
|  |         Vector_(3, R.r3().x(), R.r3().y(), 1.0+R.r3().z()); | ||
|  |       else if(R.r2().y() != -1.0) | ||
|  |         return (boost::math::constants::pi<double>() / sqrt(2.0+2.0*R.r2().y())) * | ||
|  |         Vector_(3, R.r2().x(), 1.0+R.r2().y(), R.r2().z()); | ||
|  |       else // if(R.r1().x() != -1.0)  TODO: fix this?
 | ||
|  |         return (boost::math::constants::pi<double>() / sqrt(2.0+2.0*R.r1().x())) * | ||
|  |         Vector_(3, 1.0+R.r1().x(), R.r1().y(), R.r1().z()); | ||
|  |     } else { | ||
|  |       double theta = acos((tr-1.0)/2.0); | ||
|  |       return (theta/2.0/sin(theta))*Vector_(3, | ||
|  |           R.r2().z()-R.r3().y(), | ||
|  |           R.r3().x()-R.r1().z(), | ||
|  |           R.r1().y()-R.r2().x()); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   Rot3 rodriguez(const Vector& w, double theta) { | ||
|  |   	// get components of axis \omega
 | ||
|  |     double wx = w(0), wy=w(1), wz=w(2); | ||
|  |     double wwTxx = wx*wx, wwTyy = wy*wy, wwTzz = wz*wz; | ||
|  | #ifndef NDEBUG
 | ||
|  |     double l_n = wwTxx + wwTyy + wwTzz; | ||
|  |     if (fabs(l_n-1.0)>1e-9) throw domain_error("rodriguez: length of n should be 1"); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     double c = cos(theta), s = sin(theta), c_1 = 1 - c; | ||
|  | 
 | ||
|  |     double swx = wx * s, swy = wy * s, swz = wz * s; | ||
|  |     double C00 = c_1*wwTxx, C01 = c_1*wx*wy, C02 = c_1*wx*wz; | ||
|  |     double                  C11 = c_1*wwTyy, C12 = c_1*wy*wz; | ||
|  |     double                                   C22 = c_1*wwTzz; | ||
|  | 
 | ||
|  |     return Rot3(   c + C00, -swz + C01,  swy + C02, | ||
|  |     		         swz + C01,    c + C11, -swx + C12, | ||
|  | 				        -swy + C02,  swx + C12,    c + C22); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   Rot3 rodriguez(const Vector& w) { | ||
|  |     double t = norm_2(w); | ||
|  |     if (t < 1e-5) return Rot3(); | ||
|  |     return rodriguez(w/t, t); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   Matrix Drotate1(const Rot3& R, const Point3& p) { | ||
|  |     return R.matrix() * skewSymmetric(-p.x(), -p.y(), -p.z()); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   Matrix Drotate2(const Rot3& R) { | ||
|  |     return R.matrix(); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   Point3 unrotate(const Rot3& R, const Point3& p) { | ||
|  |     const Matrix Rt(R.transpose()); | ||
|  |     return Rt*p.vector(); // q = Rt*p
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   // see doc/math.lyx, SO(3) section
 | ||
|  |   Point3 unrotate(const Rot3& R, const Point3& p, | ||
|  |   		boost::optional<Matrix&> H1, boost::optional<Matrix&> H2) { | ||
|  |     const Matrix Rt(R.transpose()); | ||
|  |     Point3 q(Rt*p.vector()); // q = Rt*p
 | ||
|  |     if (H1) *H1 = skewSymmetric(q.x(), q.y(), q.z()); | ||
|  |     if (H2) *H2 = Rt; | ||
|  |     return q; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   Matrix Dcompose1(const Rot3& R1, const Rot3& R2){ | ||
|  |     return R2.transpose(); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   Matrix Dcompose2(const Rot3& R1, const Rot3& R2){ | ||
|  |   	return I3; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   Matrix Dbetween1(const Rot3& R1, const Rot3& R2){ | ||
|  |   	return -(R2.transpose()*R1.matrix()); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   Matrix Dbetween2(const Rot3& R1, const Rot3& R2){ | ||
|  |   	return I3; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  |   pair<Matrix, Vector> RQ(const Matrix& A) { | ||
|  | 
 | ||
|  | 		double x = -atan2(-A(2, 1), A(2, 2)); | ||
|  | 		Rot3 Qx = Rot3::Rx(-x); | ||
|  | 		Matrix B = A * Qx.matrix(); | ||
|  | 
 | ||
|  | 		double y = -atan2(B(2, 0), B(2, 2)); | ||
|  | 		Rot3 Qy = Rot3::Ry(-y); | ||
|  | 		Matrix C = B * Qy.matrix(); | ||
|  | 
 | ||
|  | 		double z = -atan2(-C(1, 0), C(1, 1)); | ||
|  | 		Rot3 Qz = Rot3::Rz(-z); | ||
|  | 		Matrix R = C * Qz.matrix(); | ||
|  | 
 | ||
|  | 		Vector xyz = Vector_(3, x, y, z); | ||
|  | 		return make_pair(R, xyz); | ||
|  | 	} | ||
|  | 
 | ||
|  |   /* ************************************************************************* */ | ||
|  | 
 | ||
|  | } // namespace gtsam
 |