gtsam/matlab/+gtsam/points2DTrackMonocular.m

68 lines
1.9 KiB
Matlab
Raw Normal View History

function pts2dTracksMono = points2DTrackMonocular(K, cameraPoses, imageSize, cylinders)
2015-01-12 12:20:50 +08:00
% Assess how accurately we can reconstruct points from a particular monocular camera setup.
% After creation of the factor graph for each track, linearize it around ground truth.
% There is no optimization
% @author: Zhaoyang Lv
import gtsam.*
%% create graph
graph = NonlinearFactorGraph;
pointNoiseSigma = 0.1;
2015-01-12 12:20:50 +08:00
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
%% add a constraint on the starting pose
2015-01-12 12:20:50 +08:00
posePriorNoise = noiseModel.Diagonal.Sigmas(poseNoiseSigmas);
firstPose = cameraPoses{1};
graph.add(PriorFactorPose3(symbol('x', l), firstPose, posePriorNoise));
cameraPosesNum = length(cameraPoses);
%% add measurements and initial camera & points values
pointsNum = 0;
cylinderNum = length(cylinders);
for i = 1:cylinderNum
pointsNum = pointsNum + length(cylinders{i}.Points);
end
2015-01-12 12:20:50 +08:00
measurementNoise = noiseModel.Isotropic.Sigma(2, measurementNoiseSigma);
pts3d = {};
2015-01-12 12:20:50 +08:00
initialEstimate = Values;
for i = 1:cameraPosesNum
camera = SimpleCamera(K, cameraPoses{i});
pts3d.pts{i} = cylinderSampleProjection(camera, imageSize, cylinders);
pts3d.camera{i} = camera;
for j = 1:length(pts3d.pts{i}.Z)
graph.add(GenericProjectionFactorCal3_S2(pts3d.pts{i}.Z{j}, ...
measurementNoise, symbol('x', i), symbol('p', j), camera.K) );
2015-01-12 12:20:50 +08:00
point_j = pts3d.pts{i}.data{j}.retract(0.1*randn(3,1));
initialEstimate.insert(symbol('p', j), point_j);
end
pose_i = camera.pose.retract(0.1*randn(6,1));
initialEstimate.insert(symbole('x', i), pose_i);
2015-01-12 12:20:50 +08:00
end
%% Print the graph
graph.print(sprintf('\nFactor graph:\n'));
2015-01-12 12:20:50 +08:00
marginals = Marginals(graph, initialEstimate);
%% get all the 2d points track information
ptIdx = 0;
for i = 1:pointsNum
if isempty(pts3d.pts{i})
continue;
end
%pts2dTrackMono.pts2d = pts3d.pts{i}
pts2dTracksMono.cov{ptIdx} = marginals.marginalCovariance(symbol('p',i));
2015-01-12 12:20:50 +08:00
end
end