290 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
		
		
			
		
	
	
			290 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
|  | /* ----------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||
|  |  * Atlanta, Georgia 30332-0415 | ||
|  |  * All Rights Reserved | ||
|  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  | 
 | ||
|  |  * See LICENSE for the license information | ||
|  | 
 | ||
|  |  * -------------------------------------------------------------------------- */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @file     ActiveSetSolver-inl.h | ||
|  |  * @brief    Implmentation of ActiveSetSolver. | ||
|  |  * @author   Ivan Dario Jimenez | ||
|  |  * @author   Duy Nguyen Ta | ||
|  |  * @date     2/11/16 | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <gtsam_unstable/linear/InfeasibleInitialValues.h>
 | ||
|  | 
 | ||
|  | /******************************************************************************/ | ||
|  | // Convenient macros to reduce syntactic noise. undef later.
 | ||
|  | #define Template template <class PROBLEM, class POLICY, class INITSOLVER>
 | ||
|  | #define This ActiveSetSolver<PROBLEM, POLICY, INITSOLVER>
 | ||
|  | 
 | ||
|  | /******************************************************************************/ | ||
|  | 
 | ||
|  | namespace gtsam { | ||
|  | 
 | ||
|  | /* We have to make sure the new solution with alpha satisfies all INACTIVE inequality constraints
 | ||
|  |  * If some inactive inequality constraints complain about the full step (alpha = 1), | ||
|  |  * we have to adjust alpha to stay within the inequality constraints' feasible regions. | ||
|  |  * | ||
|  |  * For each inactive inequality j: | ||
|  |  *  - We already have: aj'*xk - bj <= 0, since xk satisfies all inequality constraints | ||
|  |  *  - We want: aj'*(xk + alpha*p) - bj <= 0 | ||
|  |  *  - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0 | ||
|  |  *  it's good! | ||
|  |  *  - We only care when aj'*p > 0. In this case, we need to choose alpha so that | ||
|  |  *  aj'*xk + alpha*aj'*p - bj <= 0  --> alpha <= (bj - aj'*xk) / (aj'*p) | ||
|  |  *  We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p) | ||
|  |  * | ||
|  |  * We want the minimum of all those alphas among all inactive inequality. | ||
|  |  */ | ||
|  | Template boost::tuple<double, int> This::computeStepSize( | ||
|  |     const InequalityFactorGraph& workingSet, const VectorValues& xk, | ||
|  |     const VectorValues& p, const double& maxAlpha) const { | ||
|  |   double minAlpha = maxAlpha; | ||
|  |   int closestFactorIx = -1; | ||
|  |   for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) { | ||
|  |     const LinearInequality::shared_ptr& factor = workingSet.at(factorIx); | ||
|  |     double b = factor->getb()[0]; | ||
|  |     // only check inactive factors
 | ||
|  |     if (!factor->active()) { | ||
|  |       // Compute a'*p
 | ||
|  |       double aTp = factor->dotProductRow(p); | ||
|  | 
 | ||
|  |       // Check if  a'*p >0. Don't care if it's not.
 | ||
|  |       if (aTp <= 0) | ||
|  |         continue; | ||
|  | 
 | ||
|  |       // Compute a'*xk
 | ||
|  |       double aTx = factor->dotProductRow(xk); | ||
|  | 
 | ||
|  |       // alpha = (b - a'*xk) / (a'*p)
 | ||
|  |       double alpha = (b - aTx) / aTp; | ||
|  |       // We want the minimum of all those max alphas
 | ||
|  |       if (alpha < minAlpha) { | ||
|  |         closestFactorIx = factorIx; | ||
|  |         minAlpha = alpha; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  |   return boost::make_tuple(minAlpha, closestFactorIx); | ||
|  | } | ||
|  | 
 | ||
|  | /******************************************************************************/ | ||
|  | /*
 | ||
|  |  * The goal of this function is to find currently active inequality constraints | ||
|  |  * that violate the condition to be active. The one that violates the condition | ||
|  |  * the most will be removed from the active set. See Nocedal06book, pg 469-471 | ||
|  |  * | ||
|  |  * Find the BAD active inequality that pulls x strongest to the wrong direction | ||
|  |  * of its constraint (i.e. it is pulling towards >0, while its feasible region is <=0) | ||
|  |  * | ||
|  |  * For active inequality constraints (those that are enforced as equality constraints | ||
|  |  * in the current working set), we want lambda < 0. | ||
|  |  * This is because: | ||
|  |  *   - From the Lagrangian L = f - lambda*c, we know that the constraint force | ||
|  |  *     is (lambda * \grad c) = \grad f. Intuitively, to keep the solution x stay | ||
|  |  *     on the constraint surface, the constraint force has to balance out with | ||
|  |  *     other unconstrained forces that are pulling x towards the unconstrained | ||
|  |  *     minimum point. The other unconstrained forces are pulling x toward (-\grad f), | ||
|  |  *     hence the constraint force has to be exactly \grad f, so that the total | ||
|  |  *     force is 0. | ||
|  |  *   - We also know that  at the constraint surface c(x)=0, \grad c points towards + (>= 0), | ||
|  |  *     while we are solving for - (<=0) constraint. | ||
|  |  *   - We want the constraint force (lambda * \grad c) to pull x towards the - (<=0) direction | ||
|  |  *     i.e., the opposite direction of \grad c where the inequality constraint <=0 is satisfied. | ||
|  |  *     That means we want lambda < 0. | ||
|  |  *   - This is because when the constrained force pulls x towards the infeasible region (+), | ||
|  |  *     the unconstrained force is pulling x towards the opposite direction into | ||
|  |  *     the feasible region (again because the total force has to be 0 to make x stay still) | ||
|  |  *     So we can drop this constraint to have a lower error but feasible solution. | ||
|  |  * | ||
|  |  * In short, active inequality constraints with lambda > 0 are BAD, because they | ||
|  |  * violate the condition to be active. | ||
|  |  * | ||
|  |  * And we want to remove the worst one with the largest lambda from the active set. | ||
|  |  * | ||
|  |  */ | ||
|  | Template int This::identifyLeavingConstraint( | ||
|  |     const InequalityFactorGraph& workingSet, | ||
|  |     const VectorValues& lambdas) const { | ||
|  |   int worstFactorIx = -1; | ||
|  |   // preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is either
 | ||
|  |   // inactive or a good inequality constraint, so we don't care!
 | ||
|  |   double maxLambda = 0.0; | ||
|  |   for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) { | ||
|  |     const LinearInequality::shared_ptr& factor = workingSet.at(factorIx); | ||
|  |     if (factor->active()) { | ||
|  |       double lambda = lambdas.at(factor->dualKey())[0]; | ||
|  |       if (lambda > maxLambda) { | ||
|  |         worstFactorIx = factorIx; | ||
|  |         maxLambda = lambda; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  |   return worstFactorIx; | ||
|  | } | ||
|  | 
 | ||
|  | //******************************************************************************
 | ||
|  | Template JacobianFactor::shared_ptr This::createDualFactor( | ||
|  |     Key key, const InequalityFactorGraph& workingSet, | ||
|  |     const VectorValues& delta) const { | ||
|  |   // Transpose the A matrix of constrained factors to have the jacobian of the
 | ||
|  |   // dual key
 | ||
|  |   TermsContainer Aterms = collectDualJacobians<LinearEquality>( | ||
|  |       key, problem_.equalities, equalityVariableIndex_); | ||
|  |   TermsContainer AtermsInequalities = collectDualJacobians<LinearInequality>( | ||
|  |       key, workingSet, inequalityVariableIndex_); | ||
|  |   Aterms.insert(Aterms.end(), AtermsInequalities.begin(), | ||
|  |                 AtermsInequalities.end()); | ||
|  | 
 | ||
|  |   // Collect the gradients of unconstrained cost factors to the b vector
 | ||
|  |   if (Aterms.size() > 0) { | ||
|  |     Vector b = problem_.costGradient(key, delta); | ||
|  |     // to compute the least-square approximation of dual variables
 | ||
|  |     return boost::make_shared<JacobianFactor>(Aterms, b); | ||
|  |   } else { | ||
|  |     return boost::make_shared<JacobianFactor>(); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | /******************************************************************************/ | ||
|  | /*  This function will create a dual graph that solves for the
 | ||
|  |  *  lagrange multipliers for the current working set. | ||
|  |  *  You can use lagrange multipliers as a necessary condition for optimality. | ||
|  |  *  The factor graph that is being solved is f' = -lambda * g' | ||
|  |  *  where f is the optimized function and g is the function resulting from | ||
|  |  *  aggregating the working set. | ||
|  |  *  The lambdas give you information about the feasibility of a constraint. | ||
|  |  *  if lambda < 0  the constraint is Ok | ||
|  |  *  if lambda = 0  you are on the constraint | ||
|  |  *  if lambda > 0  you are violating the constraint. | ||
|  |  */ | ||
|  | Template GaussianFactorGraph::shared_ptr This::buildDualGraph( | ||
|  |     const InequalityFactorGraph& workingSet, const VectorValues& delta) const { | ||
|  |   GaussianFactorGraph::shared_ptr dualGraph(new GaussianFactorGraph()); | ||
|  |   for (Key key : constrainedKeys_) { | ||
|  |     // Each constrained key becomes a factor in the dual graph
 | ||
|  |     JacobianFactor::shared_ptr dualFactor = | ||
|  |         createDualFactor(key, workingSet, delta); | ||
|  |     if (!dualFactor->empty()) dualGraph->push_back(dualFactor); | ||
|  |   } | ||
|  |   return dualGraph; | ||
|  | } | ||
|  | 
 | ||
|  | //******************************************************************************
 | ||
|  | Template GaussianFactorGraph | ||
|  | This::buildWorkingGraph(const InequalityFactorGraph& workingSet, | ||
|  |                         const VectorValues& xk) const { | ||
|  |   GaussianFactorGraph workingGraph; | ||
|  |   workingGraph.push_back(POLICY::buildCostFunction(problem_, xk)); | ||
|  |   workingGraph.push_back(problem_.equalities); | ||
|  |   for (const LinearInequality::shared_ptr& factor : workingSet) | ||
|  |     if (factor->active()) workingGraph.push_back(factor); | ||
|  |   return workingGraph; | ||
|  | } | ||
|  | 
 | ||
|  | //******************************************************************************
 | ||
|  | Template typename This::State This::iterate( | ||
|  |     const typename This::State& state) const { | ||
|  |   // Algorithm 16.3 from Nocedal06book.
 | ||
|  |   // Solve with the current working set eqn 16.39, but instead of solving for p
 | ||
|  |   // solve for x
 | ||
|  |   GaussianFactorGraph workingGraph = | ||
|  |       buildWorkingGraph(state.workingSet, state.values); | ||
|  |   VectorValues newValues = workingGraph.optimize(); | ||
|  |   // If we CAN'T move further
 | ||
|  |   // if p_k = 0 is the original condition, modified by Duy to say that the state
 | ||
|  |   // update is zero.
 | ||
|  |   if (newValues.equals(state.values, 1e-7)) { | ||
|  |     // Compute lambda from the dual graph
 | ||
|  |     GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet, | ||
|  |         newValues); | ||
|  |     VectorValues duals = dualGraph->optimize(); | ||
|  |     int leavingFactor = identifyLeavingConstraint(state.workingSet, duals); | ||
|  |     // If all inequality constraints are satisfied: We have the solution!!
 | ||
|  |     if (leavingFactor < 0) { | ||
|  |       return State(newValues, duals, state.workingSet, true, | ||
|  |           state.iterations + 1); | ||
|  |     } else { | ||
|  |       // Inactivate the leaving constraint
 | ||
|  |       InequalityFactorGraph newWorkingSet = state.workingSet; | ||
|  |       newWorkingSet.at(leavingFactor)->inactivate(); | ||
|  |       return State(newValues, duals, newWorkingSet, false, | ||
|  |           state.iterations + 1); | ||
|  |     } | ||
|  |   } else { | ||
|  |     // If we CAN make some progress, i.e. p_k != 0
 | ||
|  |     // Adapt stepsize if some inactive constraints complain about this move
 | ||
|  |     double alpha; | ||
|  |     int factorIx; | ||
|  |     VectorValues p = newValues - state.values; | ||
|  |     boost::tie(alpha, factorIx) = // using 16.41
 | ||
|  |         computeStepSize(state.workingSet, state.values, p, POLICY::maxAlpha); | ||
|  |     // also add to the working set the one that complains the most
 | ||
|  |     InequalityFactorGraph newWorkingSet = state.workingSet; | ||
|  |     if (factorIx >= 0) | ||
|  |       newWorkingSet.at(factorIx)->activate(); | ||
|  |     // step!
 | ||
|  |     newValues = state.values + alpha * p; | ||
|  |     return State(newValues, state.duals, newWorkingSet, false, | ||
|  |         state.iterations + 1); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | //******************************************************************************
 | ||
|  | Template InequalityFactorGraph This::identifyActiveConstraints( | ||
|  |     const InequalityFactorGraph& inequalities, | ||
|  |     const VectorValues& initialValues, const VectorValues& duals, | ||
|  |     bool useWarmStart) const { | ||
|  |   InequalityFactorGraph workingSet; | ||
|  |   for (const LinearInequality::shared_ptr& factor : inequalities) { | ||
|  |     LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor)); | ||
|  |     if (useWarmStart && duals.size() > 0) { | ||
|  |       if (duals.exists(workingFactor->dualKey())) workingFactor->activate(); | ||
|  |       else workingFactor->inactivate(); | ||
|  |     } else { | ||
|  |       double error = workingFactor->error(initialValues); | ||
|  |       // Safety guard. This should not happen unless users provide a bad init
 | ||
|  |       if (error > 0) throw InfeasibleInitialValues(); | ||
|  |       if (fabs(error) < 1e-7) | ||
|  |         workingFactor->activate(); | ||
|  |       else | ||
|  |         workingFactor->inactivate(); | ||
|  |     } | ||
|  |     workingSet.push_back(workingFactor); | ||
|  |   } | ||
|  |   return workingSet; | ||
|  | } | ||
|  | 
 | ||
|  | //******************************************************************************
 | ||
|  | Template std::pair<VectorValues, VectorValues> This::optimize( | ||
|  |     const VectorValues& initialValues, const VectorValues& duals, | ||
|  |     bool useWarmStart) const { | ||
|  |   // Initialize workingSet from the feasible initialValues
 | ||
|  |   InequalityFactorGraph workingSet = identifyActiveConstraints( | ||
|  |       problem_.inequalities, initialValues, duals, useWarmStart); | ||
|  |   State state(initialValues, duals, workingSet, false, 0); | ||
|  | 
 | ||
|  |   /// main loop of the solver
 | ||
|  |   while (!state.converged) state = iterate(state); | ||
|  | 
 | ||
|  |   return std::make_pair(state.values, state.duals); | ||
|  | } | ||
|  | 
 | ||
|  | //******************************************************************************
 | ||
|  | Template std::pair<VectorValues, VectorValues> This::optimize() const { | ||
|  |   INITSOLVER initSolver(problem_); | ||
|  |   VectorValues initValues = initSolver.solve(); | ||
|  |   return optimize(initValues); | ||
|  | } | ||
|  | 
 | ||
|  | } | ||
|  | 
 | ||
|  | #undef Template
 | ||
|  | #undef This
 |