354 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			354 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
|  | /*
 | ||
|  |     tests/test_sequences_and_iterators.cpp -- supporting Pythons' sequence protocol, iterators, | ||
|  |     etc. | ||
|  | 
 | ||
|  |     Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> | ||
|  | 
 | ||
|  |     All rights reserved. Use of this source code is governed by a | ||
|  |     BSD-style license that can be found in the LICENSE file. | ||
|  | */ | ||
|  | 
 | ||
|  | #include "pybind11_tests.h"
 | ||
|  | #include "constructor_stats.h"
 | ||
|  | #include <pybind11/operators.h>
 | ||
|  | #include <pybind11/stl.h>
 | ||
|  | 
 | ||
|  | template<typename T> | ||
|  | class NonZeroIterator { | ||
|  |     const T* ptr_; | ||
|  | public: | ||
|  |     NonZeroIterator(const T* ptr) : ptr_(ptr) {} | ||
|  |     const T& operator*() const { return *ptr_; } | ||
|  |     NonZeroIterator& operator++() { ++ptr_; return *this; } | ||
|  | }; | ||
|  | 
 | ||
|  | class NonZeroSentinel {}; | ||
|  | 
 | ||
|  | template<typename A, typename B> | ||
|  | bool operator==(const NonZeroIterator<std::pair<A, B>>& it, const NonZeroSentinel&) { | ||
|  |     return !(*it).first || !(*it).second; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename PythonType> | ||
|  | py::list test_random_access_iterator(PythonType x) { | ||
|  |     if (x.size() < 5) | ||
|  |         throw py::value_error("Please provide at least 5 elements for testing."); | ||
|  | 
 | ||
|  |     auto checks = py::list(); | ||
|  |     auto assert_equal = [&checks](py::handle a, py::handle b) { | ||
|  |         auto result = PyObject_RichCompareBool(a.ptr(), b.ptr(), Py_EQ); | ||
|  |         if (result == -1) { throw py::error_already_set(); } | ||
|  |         checks.append(result != 0); | ||
|  |     }; | ||
|  | 
 | ||
|  |     auto it = x.begin(); | ||
|  |     assert_equal(x[0], *it); | ||
|  |     assert_equal(x[0], it[0]); | ||
|  |     assert_equal(x[1], it[1]); | ||
|  | 
 | ||
|  |     assert_equal(x[1], *(++it)); | ||
|  |     assert_equal(x[1], *(it++)); | ||
|  |     assert_equal(x[2], *it); | ||
|  |     assert_equal(x[3], *(it += 1)); | ||
|  |     assert_equal(x[2], *(--it)); | ||
|  |     assert_equal(x[2], *(it--)); | ||
|  |     assert_equal(x[1], *it); | ||
|  |     assert_equal(x[0], *(it -= 1)); | ||
|  | 
 | ||
|  |     assert_equal(it->attr("real"), x[0].attr("real")); | ||
|  |     assert_equal((it + 1)->attr("real"), x[1].attr("real")); | ||
|  | 
 | ||
|  |     assert_equal(x[1], *(it + 1)); | ||
|  |     assert_equal(x[1], *(1 + it)); | ||
|  |     it += 3; | ||
|  |     assert_equal(x[1], *(it - 2)); | ||
|  | 
 | ||
|  |     checks.append(static_cast<std::size_t>(x.end() - x.begin()) == x.size()); | ||
|  |     checks.append((x.begin() + static_cast<std::ptrdiff_t>(x.size())) == x.end()); | ||
|  |     checks.append(x.begin() < x.end()); | ||
|  | 
 | ||
|  |     return checks; | ||
|  | } | ||
|  | 
 | ||
|  | TEST_SUBMODULE(sequences_and_iterators, m) { | ||
|  |     // test_sliceable
 | ||
|  |     class Sliceable{ | ||
|  |     public: | ||
|  |       Sliceable(int n): size(n) {} | ||
|  |       int start,stop,step; | ||
|  |       int size; | ||
|  |     }; | ||
|  |     py::class_<Sliceable>(m,"Sliceable") | ||
|  |         .def(py::init<int>()) | ||
|  |         .def("__getitem__",[](const Sliceable &s, py::slice slice) { | ||
|  |           ssize_t start, stop, step, slicelength; | ||
|  |           if (!slice.compute(s.size, &start, &stop, &step, &slicelength)) | ||
|  |               throw py::error_already_set(); | ||
|  |           int istart = static_cast<int>(start); | ||
|  |           int istop =  static_cast<int>(stop); | ||
|  |           int istep =  static_cast<int>(step); | ||
|  |           return std::make_tuple(istart,istop,istep); | ||
|  |         }) | ||
|  |         ; | ||
|  | 
 | ||
|  |     // test_sequence
 | ||
|  |     class Sequence { | ||
|  |     public: | ||
|  |         Sequence(size_t size) : m_size(size) { | ||
|  |             print_created(this, "of size", m_size); | ||
|  |             m_data = new float[size]; | ||
|  |             memset(m_data, 0, sizeof(float) * size); | ||
|  |         } | ||
|  |         Sequence(const std::vector<float> &value) : m_size(value.size()) { | ||
|  |             print_created(this, "of size", m_size, "from std::vector"); | ||
|  |             m_data = new float[m_size]; | ||
|  |             memcpy(m_data, &value[0], sizeof(float) * m_size); | ||
|  |         } | ||
|  |         Sequence(const Sequence &s) : m_size(s.m_size) { | ||
|  |             print_copy_created(this); | ||
|  |             m_data = new float[m_size]; | ||
|  |             memcpy(m_data, s.m_data, sizeof(float)*m_size); | ||
|  |         } | ||
|  |         Sequence(Sequence &&s) : m_size(s.m_size), m_data(s.m_data) { | ||
|  |             print_move_created(this); | ||
|  |             s.m_size = 0; | ||
|  |             s.m_data = nullptr; | ||
|  |         } | ||
|  | 
 | ||
|  |         ~Sequence() { print_destroyed(this); delete[] m_data; } | ||
|  | 
 | ||
|  |         Sequence &operator=(const Sequence &s) { | ||
|  |             if (&s != this) { | ||
|  |                 delete[] m_data; | ||
|  |                 m_size = s.m_size; | ||
|  |                 m_data = new float[m_size]; | ||
|  |                 memcpy(m_data, s.m_data, sizeof(float)*m_size); | ||
|  |             } | ||
|  |             print_copy_assigned(this); | ||
|  |             return *this; | ||
|  |         } | ||
|  | 
 | ||
|  |         Sequence &operator=(Sequence &&s) { | ||
|  |             if (&s != this) { | ||
|  |                 delete[] m_data; | ||
|  |                 m_size = s.m_size; | ||
|  |                 m_data = s.m_data; | ||
|  |                 s.m_size = 0; | ||
|  |                 s.m_data = nullptr; | ||
|  |             } | ||
|  |             print_move_assigned(this); | ||
|  |             return *this; | ||
|  |         } | ||
|  | 
 | ||
|  |         bool operator==(const Sequence &s) const { | ||
|  |             if (m_size != s.size()) return false; | ||
|  |             for (size_t i = 0; i < m_size; ++i) | ||
|  |                 if (m_data[i] != s[i]) | ||
|  |                     return false; | ||
|  |             return true; | ||
|  |         } | ||
|  |         bool operator!=(const Sequence &s) const { return !operator==(s); } | ||
|  | 
 | ||
|  |         float operator[](size_t index) const { return m_data[index]; } | ||
|  |         float &operator[](size_t index) { return m_data[index]; } | ||
|  | 
 | ||
|  |         bool contains(float v) const { | ||
|  |             for (size_t i = 0; i < m_size; ++i) | ||
|  |                 if (v == m_data[i]) | ||
|  |                     return true; | ||
|  |             return false; | ||
|  |         } | ||
|  | 
 | ||
|  |         Sequence reversed() const { | ||
|  |             Sequence result(m_size); | ||
|  |             for (size_t i = 0; i < m_size; ++i) | ||
|  |                 result[m_size - i - 1] = m_data[i]; | ||
|  |             return result; | ||
|  |         } | ||
|  | 
 | ||
|  |         size_t size() const { return m_size; } | ||
|  | 
 | ||
|  |         const float *begin() const { return m_data; } | ||
|  |         const float *end() const { return m_data+m_size; } | ||
|  | 
 | ||
|  |     private: | ||
|  |         size_t m_size; | ||
|  |         float *m_data; | ||
|  |     }; | ||
|  |     py::class_<Sequence>(m, "Sequence") | ||
|  |         .def(py::init<size_t>()) | ||
|  |         .def(py::init<const std::vector<float>&>()) | ||
|  |         /// Bare bones interface
 | ||
|  |         .def("__getitem__", [](const Sequence &s, size_t i) { | ||
|  |             if (i >= s.size()) throw py::index_error(); | ||
|  |             return s[i]; | ||
|  |         }) | ||
|  |         .def("__setitem__", [](Sequence &s, size_t i, float v) { | ||
|  |             if (i >= s.size()) throw py::index_error(); | ||
|  |             s[i] = v; | ||
|  |         }) | ||
|  |         .def("__len__", &Sequence::size) | ||
|  |         /// Optional sequence protocol operations
 | ||
|  |         .def("__iter__", [](const Sequence &s) { return py::make_iterator(s.begin(), s.end()); }, | ||
|  |                          py::keep_alive<0, 1>() /* Essential: keep object alive while iterator exists */) | ||
|  |         .def("__contains__", [](const Sequence &s, float v) { return s.contains(v); }) | ||
|  |         .def("__reversed__", [](const Sequence &s) -> Sequence { return s.reversed(); }) | ||
|  |         /// Slicing protocol (optional)
 | ||
|  |         .def("__getitem__", [](const Sequence &s, py::slice slice) -> Sequence* { | ||
|  |             size_t start, stop, step, slicelength; | ||
|  |             if (!slice.compute(s.size(), &start, &stop, &step, &slicelength)) | ||
|  |                 throw py::error_already_set(); | ||
|  |             Sequence *seq = new Sequence(slicelength); | ||
|  |             for (size_t i = 0; i < slicelength; ++i) { | ||
|  |                 (*seq)[i] = s[start]; start += step; | ||
|  |             } | ||
|  |             return seq; | ||
|  |         }) | ||
|  |         .def("__setitem__", [](Sequence &s, py::slice slice, const Sequence &value) { | ||
|  |             size_t start, stop, step, slicelength; | ||
|  |             if (!slice.compute(s.size(), &start, &stop, &step, &slicelength)) | ||
|  |                 throw py::error_already_set(); | ||
|  |             if (slicelength != value.size()) | ||
|  |                 throw std::runtime_error("Left and right hand size of slice assignment have different sizes!"); | ||
|  |             for (size_t i = 0; i < slicelength; ++i) { | ||
|  |                 s[start] = value[i]; start += step; | ||
|  |             } | ||
|  |         }) | ||
|  |         /// Comparisons
 | ||
|  |         .def(py::self == py::self) | ||
|  |         .def(py::self != py::self) | ||
|  |         // Could also define py::self + py::self for concatenation, etc.
 | ||
|  |         ; | ||
|  | 
 | ||
|  |     // test_map_iterator
 | ||
|  |     // Interface of a map-like object that isn't (directly) an unordered_map, but provides some basic
 | ||
|  |     // map-like functionality.
 | ||
|  |     class StringMap { | ||
|  |     public: | ||
|  |         StringMap() = default; | ||
|  |         StringMap(std::unordered_map<std::string, std::string> init) | ||
|  |             : map(std::move(init)) {} | ||
|  | 
 | ||
|  |         void set(std::string key, std::string val) { map[key] = val; } | ||
|  |         std::string get(std::string key) const { return map.at(key); } | ||
|  |         size_t size() const { return map.size(); } | ||
|  |     private: | ||
|  |         std::unordered_map<std::string, std::string> map; | ||
|  |     public: | ||
|  |         decltype(map.cbegin()) begin() const { return map.cbegin(); } | ||
|  |         decltype(map.cend()) end() const { return map.cend(); } | ||
|  |     }; | ||
|  |     py::class_<StringMap>(m, "StringMap") | ||
|  |         .def(py::init<>()) | ||
|  |         .def(py::init<std::unordered_map<std::string, std::string>>()) | ||
|  |         .def("__getitem__", [](const StringMap &map, std::string key) { | ||
|  |                 try { return map.get(key); } | ||
|  |                 catch (const std::out_of_range&) { | ||
|  |                     throw py::key_error("key '" + key + "' does not exist"); | ||
|  |                 } | ||
|  |         }) | ||
|  |         .def("__setitem__", &StringMap::set) | ||
|  |         .def("__len__", &StringMap::size) | ||
|  |         .def("__iter__", [](const StringMap &map) { return py::make_key_iterator(map.begin(), map.end()); }, | ||
|  |                 py::keep_alive<0, 1>()) | ||
|  |         .def("items", [](const StringMap &map) { return py::make_iterator(map.begin(), map.end()); }, | ||
|  |                 py::keep_alive<0, 1>()) | ||
|  |         ; | ||
|  | 
 | ||
|  |     // test_generalized_iterators
 | ||
|  |     class IntPairs { | ||
|  |     public: | ||
|  |         IntPairs(std::vector<std::pair<int, int>> data) : data_(std::move(data)) {} | ||
|  |         const std::pair<int, int>* begin() const { return data_.data(); } | ||
|  |     private: | ||
|  |         std::vector<std::pair<int, int>> data_; | ||
|  |     }; | ||
|  |     py::class_<IntPairs>(m, "IntPairs") | ||
|  |         .def(py::init<std::vector<std::pair<int, int>>>()) | ||
|  |         .def("nonzero", [](const IntPairs& s) { | ||
|  |                 return py::make_iterator(NonZeroIterator<std::pair<int, int>>(s.begin()), NonZeroSentinel()); | ||
|  |         }, py::keep_alive<0, 1>()) | ||
|  |         .def("nonzero_keys", [](const IntPairs& s) { | ||
|  |             return py::make_key_iterator(NonZeroIterator<std::pair<int, int>>(s.begin()), NonZeroSentinel()); | ||
|  |         }, py::keep_alive<0, 1>()) | ||
|  |         ; | ||
|  | 
 | ||
|  | 
 | ||
|  | #if 0
 | ||
|  |     // Obsolete: special data structure for exposing custom iterator types to python
 | ||
|  |     // kept here for illustrative purposes because there might be some use cases which
 | ||
|  |     // are not covered by the much simpler py::make_iterator
 | ||
|  | 
 | ||
|  |     struct PySequenceIterator { | ||
|  |         PySequenceIterator(const Sequence &seq, py::object ref) : seq(seq), ref(ref) { } | ||
|  | 
 | ||
|  |         float next() { | ||
|  |             if (index == seq.size()) | ||
|  |                 throw py::stop_iteration(); | ||
|  |             return seq[index++]; | ||
|  |         } | ||
|  | 
 | ||
|  |         const Sequence &seq; | ||
|  |         py::object ref; // keep a reference
 | ||
|  |         size_t index = 0; | ||
|  |     }; | ||
|  | 
 | ||
|  |     py::class_<PySequenceIterator>(seq, "Iterator") | ||
|  |         .def("__iter__", [](PySequenceIterator &it) -> PySequenceIterator& { return it; }) | ||
|  |         .def("__next__", &PySequenceIterator::next); | ||
|  | 
 | ||
|  |     On the actual Sequence object, the iterator would be constructed as follows: | ||
|  |     .def("__iter__", [](py::object s) { return PySequenceIterator(s.cast<const Sequence &>(), s); }) | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     // test_python_iterator_in_cpp
 | ||
|  |     m.def("object_to_list", [](py::object o) { | ||
|  |         auto l = py::list(); | ||
|  |         for (auto item : o) { | ||
|  |             l.append(item); | ||
|  |         } | ||
|  |         return l; | ||
|  |     }); | ||
|  | 
 | ||
|  |     m.def("iterator_to_list", [](py::iterator it) { | ||
|  |         auto l = py::list(); | ||
|  |         while (it != py::iterator::sentinel()) { | ||
|  |             l.append(*it); | ||
|  |             ++it; | ||
|  |         } | ||
|  |         return l; | ||
|  |     }); | ||
|  | 
 | ||
|  |     // Make sure that py::iterator works with std algorithms
 | ||
|  |     m.def("count_none", [](py::object o) { | ||
|  |         return std::count_if(o.begin(), o.end(), [](py::handle h) { return h.is_none(); }); | ||
|  |     }); | ||
|  | 
 | ||
|  |     m.def("find_none", [](py::object o) { | ||
|  |         auto it = std::find_if(o.begin(), o.end(), [](py::handle h) { return h.is_none(); }); | ||
|  |         return it->is_none(); | ||
|  |     }); | ||
|  | 
 | ||
|  |     m.def("count_nonzeros", [](py::dict d) { | ||
|  |        return std::count_if(d.begin(), d.end(), [](std::pair<py::handle, py::handle> p) { | ||
|  |            return p.second.cast<int>() != 0; | ||
|  |        }); | ||
|  |     }); | ||
|  | 
 | ||
|  |     m.def("tuple_iterator", &test_random_access_iterator<py::tuple>); | ||
|  |     m.def("list_iterator", &test_random_access_iterator<py::list>); | ||
|  |     m.def("sequence_iterator", &test_random_access_iterator<py::sequence>); | ||
|  | 
 | ||
|  |     // test_iterator_passthrough
 | ||
|  |     // #181: iterator passthrough did not compile
 | ||
|  |     m.def("iterator_passthrough", [](py::iterator s) -> py::iterator { | ||
|  |         return py::make_iterator(std::begin(s), std::end(s)); | ||
|  |     }); | ||
|  | 
 | ||
|  |     // test_iterator_rvp
 | ||
|  |     // #388: Can't make iterators via make_iterator() with different r/v policies
 | ||
|  |     static std::vector<int> list = { 1, 2, 3 }; | ||
|  |     m.def("make_iterator_1", []() { return py::make_iterator<py::return_value_policy::copy>(list); }); | ||
|  |     m.def("make_iterator_2", []() { return py::make_iterator<py::return_value_policy::automatic>(list); }); | ||
|  | } |