186 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			186 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
|  | /**
 | ||
|  |  *  @file   testIterative.cpp | ||
|  |  *  @brief  Unit tests for iterative methods | ||
|  |  *  @author Frank Dellaert | ||
|  |  **/ | ||
|  | 
 | ||
|  | #include <boost/assign/std/list.hpp> // for operator +=
 | ||
|  | using namespace boost::assign; | ||
|  | 
 | ||
|  | #include <CppUnitLite/TestHarness.h>
 | ||
|  | 
 | ||
|  | // TODO: DANGEROUS, create shared pointers
 | ||
|  | #define GTSAM_MAGIC_GAUSSIAN 3
 | ||
|  | #define GTSAM_MAGIC_KEY
 | ||
|  | 
 | ||
|  | #include "Ordering.h"
 | ||
|  | #include "VectorConfig.h"
 | ||
|  | #include "smallExample.h"
 | ||
|  | #include "pose2SLAM.h"
 | ||
|  | #include "SubgraphPreconditioner.h"
 | ||
|  | #include "FactorGraph-inl.h"
 | ||
|  | #include "NonlinearFactorGraph-inl.h"
 | ||
|  | #include "iterative-inl.h"
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | using namespace gtsam; | ||
|  | using namespace example; | ||
|  | 
 | ||
|  | static bool verbose = false; | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Iterative, steepestDescent ) | ||
|  | { | ||
|  | 	// Expected solution
 | ||
|  | 	Ordering ord; | ||
|  | 	ord += "l1", "x1", "x2"; | ||
|  | 	GaussianFactorGraph fg = createGaussianFactorGraph(); | ||
|  | 	VectorConfig expected = fg.optimize(ord); // destructive
 | ||
|  | 
 | ||
|  | 	// Do gradient descent
 | ||
|  | 	GaussianFactorGraph fg2 = createGaussianFactorGraph(); | ||
|  | 	VectorConfig zero = createZeroDelta(); | ||
|  | 	VectorConfig actual = steepestDescent(fg2, zero, verbose); | ||
|  | 	CHECK(assert_equal(expected,actual,1e-2)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Iterative, conjugateGradientDescent ) | ||
|  | { | ||
|  | 	// Expected solution
 | ||
|  | 	Ordering ord; | ||
|  | 	ord += "l1", "x1", "x2"; | ||
|  | 	GaussianFactorGraph fg = createGaussianFactorGraph(); | ||
|  | 	VectorConfig expected = fg.optimize(ord); // destructive
 | ||
|  | 
 | ||
|  | 	// create graph and get matrices
 | ||
|  | 	GaussianFactorGraph fg2 = createGaussianFactorGraph(); | ||
|  | 	Matrix A; | ||
|  | 	Vector b; | ||
|  | 	Vector x0 = gtsam::zero(6); | ||
|  | 	boost::tie(A, b) = fg2.matrix(ord); | ||
|  | 	Vector expectedX = Vector_(6, -0.1, 0.1, -0.1, -0.1, 0.1, -0.2); | ||
|  | 
 | ||
|  | 	// Do conjugate gradient descent, System version
 | ||
|  | 	System Ab(A, b); | ||
|  | 	Vector actualX = conjugateGradientDescent(Ab, x0, verbose); | ||
|  | 	CHECK(assert_equal(expectedX,actualX,1e-9)); | ||
|  | 
 | ||
|  | 	// Do conjugate gradient descent, Matrix version
 | ||
|  | 	Vector actualX2 = conjugateGradientDescent(A, b, x0, verbose); | ||
|  | 	CHECK(assert_equal(expectedX,actualX2,1e-9)); | ||
|  | 
 | ||
|  | 	// Do conjugate gradient descent on factor graph
 | ||
|  | 	VectorConfig zero = createZeroDelta(); | ||
|  | 	VectorConfig actual = conjugateGradientDescent(fg2, zero, verbose); | ||
|  | 	CHECK(assert_equal(expected,actual,1e-2)); | ||
|  | 
 | ||
|  | 	// Test method
 | ||
|  | 	VectorConfig actual2 = fg2.conjugateGradientDescent(zero, verbose); | ||
|  | 	CHECK(assert_equal(expected,actual2,1e-2)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | /*TEST( Iterative, conjugateGradientDescent_hard_constraint )
 | ||
|  | { | ||
|  | 	typedef Pose2Config::Key Key; | ||
|  | 
 | ||
|  | 	Pose2Config config; | ||
|  | 	config.insert(1, Pose2(0.,0.,0.)); | ||
|  | 	config.insert(2, Pose2(1.5,0.,0.)); | ||
|  | 
 | ||
|  | 	Pose2Graph graph; | ||
|  | 	Matrix cov = eye(3); | ||
|  | 	graph.push_back(Pose2Graph::sharedFactor(new Pose2Factor(Key(1), Key(2), Pose2(1.,0.,0.), cov))); | ||
|  | 	graph.addHardConstraint(1, config[1]); | ||
|  | 
 | ||
|  | 	VectorConfig zeros; | ||
|  | 	zeros.insert("x1",zero(3)); | ||
|  | 	zeros.insert("x2",zero(3)); | ||
|  | 
 | ||
|  | 	GaussianFactorGraph fg = graph.linearize(config); | ||
|  | 	VectorConfig actual = conjugateGradientDescent(fg, zeros, true, 1e-3, 1e-5, 10); | ||
|  | 
 | ||
|  | 	VectorConfig expected; | ||
|  | 	expected.insert("x1", zero(3)); | ||
|  | 	expected.insert("x2", Vector_(-0.5,0.,0.)); | ||
|  | 	CHECK(assert_equal(expected, actual)); | ||
|  | }*/ | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Iterative, conjugateGradientDescent_soft_constraint ) | ||
|  | { | ||
|  | 	Pose2Config config; | ||
|  | 	config.insert(1, Pose2(0.,0.,0.)); | ||
|  | 	config.insert(2, Pose2(1.5,0.,0.)); | ||
|  | 
 | ||
|  | 	Pose2Graph graph; | ||
|  | 	graph.addPrior(1, Pose2(0.,0.,0.), Isotropic::Sigma(3, 1e-10)); | ||
|  | 	graph.addConstraint(1,2, Pose2(1.,0.,0.), Isotropic::Sigma(3, 1)); | ||
|  | 
 | ||
|  | 	VectorConfig zeros; | ||
|  | 	zeros.insert("x1",zero(3)); | ||
|  | 	zeros.insert("x2",zero(3)); | ||
|  | 
 | ||
|  | 	boost::shared_ptr<GaussianFactorGraph> fg = graph.linearize(config); | ||
|  | 	VectorConfig actual = conjugateGradientDescent(*fg, zeros, verbose, 1e-3, 1e-5, 100); | ||
|  | 
 | ||
|  | 	VectorConfig expected; | ||
|  | 	expected.insert("x1", zero(3)); | ||
|  | 	expected.insert("x2", Vector_(3,-0.5,0.,0.)); | ||
|  | 	CHECK(assert_equal(expected, actual)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | TEST( Iterative, subgraphPCG ) | ||
|  | { | ||
|  | 	typedef Pose2Config::Key Key; | ||
|  | 
 | ||
|  | 	Pose2Config theta_bar; | ||
|  | 	theta_bar.insert(1, Pose2(0.,0.,0.)); | ||
|  | 	theta_bar.insert(2, Pose2(1.5,0.,0.)); | ||
|  | 
 | ||
|  | 	Pose2Graph graph; | ||
|  | 	graph.addPrior(1, Pose2(0.,0.,0.), Isotropic::Sigma(3, 1e-10)); | ||
|  | 	graph.addConstraint(1,2, Pose2(1.,0.,0.), Isotropic::Sigma(3, 1)); | ||
|  | 
 | ||
|  | 	// generate spanning tree and create ordering
 | ||
|  | 	PredecessorMap<Key> tree = graph.findMinimumSpanningTree<Key, Pose2Factor>(); | ||
|  | 	list<Key> keys = predecessorMap2Keys(tree); | ||
|  | 	list<Symbol> symbols; | ||
|  | 	symbols.resize(keys.size()); | ||
|  | 	std::transform(keys.begin(), keys.end(), symbols.begin(), key2symbol<Key>); | ||
|  | 	Ordering ordering(symbols); | ||
|  | 
 | ||
|  | 	Key root = keys.back(); | ||
|  | 	Pose2Graph T, C; | ||
|  | 	graph.split<Key, Pose2Factor>(tree, T, C); | ||
|  | 
 | ||
|  | 	// build the subgraph PCG system
 | ||
|  | 	boost::shared_ptr<GaussianFactorGraph> Ab1_ = T.linearize(theta_bar); | ||
|  | 	SubgraphPreconditioner::sharedFG Ab1 = T.linearize(theta_bar); | ||
|  | 	SubgraphPreconditioner::sharedFG Ab2 = C.linearize(theta_bar); | ||
|  | 	SubgraphPreconditioner::sharedBayesNet Rc1 = Ab1_->eliminate_(ordering); | ||
|  | 	SubgraphPreconditioner::sharedConfig xbar = optimize_(*Rc1); | ||
|  | 	SubgraphPreconditioner system(Ab1, Ab2, Rc1, xbar); | ||
|  | 
 | ||
|  | 	VectorConfig zeros = VectorConfig::zero(*xbar); | ||
|  | 
 | ||
|  | 	// Solve the subgraph PCG
 | ||
|  | 	VectorConfig ybar = conjugateGradients<SubgraphPreconditioner, VectorConfig, | ||
|  | 			Errors> (system, zeros, verbose, 1e-5, 1e-5, 100); | ||
|  | 	VectorConfig actual = system.x(ybar); | ||
|  | 
 | ||
|  | 	VectorConfig expected; | ||
|  | 	expected.insert("x1", zero(3)); | ||
|  | 	expected.insert("x2", Vector_(3, -0.5, 0., 0.)); | ||
|  | 	CHECK(assert_equal(expected, actual)); | ||
|  | } | ||
|  | 
 | ||
|  | /* ************************************************************************* */ | ||
|  | int main() { | ||
|  | 	TestResult tr; | ||
|  | 	return TestRegistry::runAllTests(tr); | ||
|  | } | ||
|  | /* ************************************************************************* */ |