gtsam/matlab/gtsam_examples/SFMExample.m

90 lines
2.9 KiB
Matlab
Raw Normal View History

2012-06-05 13:15:26 +08:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
% Atlanta, Georgia 30332-0415
% All Rights Reserved
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% See LICENSE for the license information
%
% @brief A structure from motion example
2012-06-05 13:15:26 +08:00
% @author Duy-Nguyen Ta
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2012-08-06 03:31:27 +08:00
import gtsam.*
2012-06-05 13:15:26 +08:00
%% Assumptions
% - Landmarks as 8 vertices of a cube: (10,10,10) (-10,10,10) etc...
% - Cameras are on a circle around the cube, pointing at the world origin
% - Each camera sees all landmarks.
% - Visual measurements as 2D points are given, corrupted by Gaussian noise.
2012-06-13 20:07:02 +08:00
% Data Options
options.triangle = false;
options.nrCameras = 10;
options.showImages = false;
2012-06-05 13:15:26 +08:00
2012-06-13 20:07:02 +08:00
%% Generate data
2012-08-06 03:31:27 +08:00
[data,truth] = VisualISAMGenerateData(options);
2012-06-05 13:15:26 +08:00
measurementNoiseSigma = 1.0;
pointNoiseSigma = 0.1;
2012-06-05 13:15:26 +08:00
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
%% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph)
2012-07-24 06:15:08 +08:00
graph = NonlinearFactorGraph;
2012-06-05 13:15:26 +08:00
%% Add factors for all measurements
measurementNoise = noiseModel.Isotropic.Sigma(2,measurementNoiseSigma);
for i=1:length(data.Z)
for k=1:length(data.Z{i})
j = data.J{i}{k};
2012-07-24 06:15:08 +08:00
graph.add(GenericProjectionFactorCal3_S2(data.Z{i}{k}, measurementNoise, symbol('x',i), symbol('p',j), data.K));
2012-06-05 13:15:26 +08:00
end
end
%% Add Gaussian priors for a pose and a landmark to constrain the system
posePriorNoise = noiseModel.Diagonal.Sigmas(poseNoiseSigmas);
2012-07-24 06:15:08 +08:00
graph.add(PriorFactorPose3(symbol('x',1), truth.cameras{1}.pose, posePriorNoise));
pointPriorNoise = noiseModel.Isotropic.Sigma(3,pointNoiseSigma);
2012-07-24 06:15:08 +08:00
graph.add(PriorFactorPoint3(symbol('p',1), truth.points{1}, pointPriorNoise));
2012-06-05 13:15:26 +08:00
%% Print the graph
graph.print(sprintf('\nFactor graph:\n'));
%% Initialize cameras and points close to ground truth in this example
2012-07-24 06:15:08 +08:00
initialEstimate = Values;
2012-06-13 20:07:02 +08:00
for i=1:size(truth.cameras,2)
pose_i = truth.cameras{i}.pose.retract(0.1*randn(6,1));
2012-07-24 06:15:08 +08:00
initialEstimate.insert(symbol('x',i), pose_i);
2012-06-05 13:15:26 +08:00
end
2012-06-13 20:07:02 +08:00
for j=1:size(truth.points,2)
2020-08-18 02:37:12 +08:00
point_j = Point3(truth.points{j} + 0.1*randn(3,1));
2012-07-24 06:15:08 +08:00
initialEstimate.insert(symbol('p',j), point_j);
2012-06-05 13:15:26 +08:00
end
initialEstimate.print(sprintf('\nInitial estimate:\n '));
%% Fine grain optimization, allowing user to iterate step by step
parameters = LevenbergMarquardtParams;
parameters.setlambdaInitial(1.0);
parameters.setVerbosityLM('trylambda');
2012-07-24 06:15:08 +08:00
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate, parameters);
for i=1:5
optimizer.iterate();
end
result = optimizer.values();
2012-06-05 13:15:26 +08:00
result.print(sprintf('\nFinal result:\n '));
%% Plot results with covariance ellipses
2012-07-24 06:15:08 +08:00
marginals = Marginals(graph, result);
cla
2012-06-05 13:15:26 +08:00
hold on;
2012-08-06 03:31:27 +08:00
plot3DPoints(result, [], marginals);
plot3DTrajectory(result, '*', 1, 8, marginals);
2012-07-24 06:15:08 +08:00
axis([-40 40 -40 40 -10 20]);axis equal
view(3)
colormap('hot')