76 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Matlab
		
	
	
		
		
			
		
	
	
			76 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Matlab
		
	
	
|  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|  | % GTSAM Copyright 2010, Georgia Tech Research Corporation,  | ||
|  | % Atlanta, Georgia 30332-0415 | ||
|  | % All Rights Reserved | ||
|  | % Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  | %  | ||
|  | % See LICENSE for the license information | ||
|  | % | ||
|  | % @brief Simple robotics example using the pre-built planar SLAM domain | ||
|  | % @author Alex Cunningham | ||
|  | % @author Frank Dellaert | ||
|  | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|  | 
 | ||
|  | %% Assumptions | ||
|  | %  - All values are axis aligned | ||
|  | %  - Robot poses are facing along the X axis (horizontal, to the right in images) | ||
|  | %  - We have bearing and range information for measurements | ||
|  | %  - We have full odometry for measurements | ||
|  | %  - The robot and landmarks are on a grid, moving 2 meters each step | ||
|  | %  - Landmarks are 2 meters away from the robot trajectory | ||
|  | 
 | ||
|  | %% Create keys for variables | ||
|  | x1 = symbol('x',1); x2 = symbol('x',2); x3 = symbol('x',3); | ||
|  | l1 = symbol('l',1); l2 = symbol('l',2); | ||
|  | 
 | ||
|  | %% Create graph container and add factors to it | ||
|  | graph = planarSLAMGraph; | ||
|  | 
 | ||
|  | %% Add prior | ||
|  | % gaussian for prior | ||
|  | priorNoise = gtsamSharedNoiseModel_Sigmas([0.3; 0.3; 0.1]); | ||
|  | priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin | ||
|  | graph.addPrior(x1, priorMean, priorNoise); % add directly to graph | ||
|  | 
 | ||
|  | %% Add odometry | ||
|  | % general noisemodel for odometry | ||
|  | odometryNoise = gtsamSharedNoiseModel_Sigmas([0.2; 0.2; 0.1]); | ||
|  | odometry = gtsamPose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case) | ||
|  | graph.addOdometry(x1, x2, odometry, odometryNoise); | ||
|  | graph.addOdometry(x2, x3, odometry, odometryNoise); | ||
|  | 
 | ||
|  | %% Add measurements | ||
|  | % general noisemodel for measurements | ||
|  | meas_model = gtsamSharedNoiseModel_Sigmas([0.1; 0.2]); | ||
|  | 
 | ||
|  | % create the measurement values - indices are (pose id, landmark id) | ||
|  | degrees = pi/180; | ||
|  | bearing11 = gtsamRot2(45*degrees); | ||
|  | bearing21 = gtsamRot2(90*degrees); | ||
|  | bearing32 = gtsamRot2(90*degrees); | ||
|  | range11 = sqrt(4+4); | ||
|  | range21 = 2.0; | ||
|  | range32 = 2.0; | ||
|  | 
 | ||
|  | % % create bearing/range factors and add them | ||
|  | graph.addBearingRange(x1, l1, bearing11, range11, meas_model); | ||
|  | graph.addBearingRange(x2, l1, bearing21, range21, meas_model); | ||
|  | graph.addBearingRange(x3, l2, bearing32, range32, meas_model); | ||
|  | 
 | ||
|  | % print | ||
|  | graph.print('full graph'); | ||
|  | 
 | ||
|  | %% Initialize to noisy points | ||
|  | initialEstimate = planarSLAMValues; | ||
|  | initialEstimate.insertPose(x1, gtsamPose2(0.5, 0.0, 0.2)); | ||
|  | initialEstimate.insertPose(x2, gtsamPose2(2.3, 0.1,-0.2)); | ||
|  | initialEstimate.insertPose(x3, gtsamPose2(4.1, 0.1, 0.1)); | ||
|  | initialEstimate.insertPoint(l1, gtsamPoint2(1.8, 2.1)); | ||
|  | initialEstimate.insertPoint(l2, gtsamPoint2(4.1, 1.8)); | ||
|  | 
 | ||
|  | initialEstimate.print('initial estimate'); | ||
|  | 
 | ||
|  | %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd | ||
|  | result = graph.optimize(initialEstimate); | ||
|  | result.print('final result'); |