138 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
		
		
			
		
	
	
			138 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C++
		
	
	
|  | /* ----------------------------------------------------------------------------
 | ||
|  | 
 | ||
|  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation,  | ||
|  |  * Atlanta, Georgia 30332-0415 | ||
|  |  * All Rights Reserved | ||
|  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
|  | 
 | ||
|  |  * See LICENSE for the license information | ||
|  | 
 | ||
|  |  * -------------------------------------------------------------------------- */ | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * @file PlanarSLAMExample_selfcontained.cpp | ||
|  |  * @brief Simple robotics example with all typedefs internal to this script. | ||
|  |  * @author Alex Cunningham | ||
|  |  */ | ||
|  | 
 | ||
|  | // add in headers for specific factors
 | ||
|  | #include <gtsam/slam/PriorFactor.h>
 | ||
|  | #include <gtsam/slam/BetweenFactor.h>
 | ||
|  | #include <gtsam/slam/BearingRangeFactor.h>
 | ||
|  | 
 | ||
|  | // for all nonlinear keys
 | ||
|  | #include <gtsam/nonlinear/Symbol.h>
 | ||
|  | 
 | ||
|  | // implementations for structures - needed if self-contained, and these should be included last
 | ||
|  | #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | ||
|  | #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | ||
|  | #include <gtsam/nonlinear/Marginals.h>
 | ||
|  | 
 | ||
|  | // for modeling measurement uncertainty - all models included here
 | ||
|  | #include <gtsam/linear/NoiseModel.h>
 | ||
|  | 
 | ||
|  | // for points and poses
 | ||
|  | #include <gtsam/geometry/Point2.h>
 | ||
|  | #include <gtsam/geometry/Pose2.h>
 | ||
|  | 
 | ||
|  | #include <cmath>
 | ||
|  | #include <iostream>
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | using namespace gtsam; | ||
|  | 
 | ||
|  | /**
 | ||
|  |  * In this version of the system we make the following assumptions: | ||
|  |  *  - All values are axis aligned | ||
|  |  *  - Robot poses are facing along the X axis (horizontal, to the right in images) | ||
|  |  *  - We have bearing and range information for measurements | ||
|  |  *  - We have full odometry for measurements | ||
|  |  *  - The robot and landmarks are on a grid, moving 2 meters each step | ||
|  |  *  - Landmarks are 2 meters away from the robot trajectory | ||
|  |  */ | ||
|  | int main(int argc, char** argv) { | ||
|  | 	// create keys for variables
 | ||
|  | 	Symbol i1('x',1), i2('x',2), i3('x',3); | ||
|  | 	Symbol j1('l',1), j2('l',2); | ||
|  | 
 | ||
|  | 	// create graph container and add factors to it
 | ||
|  | 	NonlinearFactorGraph graph; | ||
|  | 
 | ||
|  | 	/* add prior  */ | ||
|  | 	// gaussian for prior
 | ||
|  | 	SharedDiagonal priorNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); | ||
|  | 	Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
 | ||
|  | 	PriorFactor<Pose2> posePrior(i1, priorMean, priorNoise); // create the factor
 | ||
|  | 	graph.add(posePrior);  // add the factor to the graph
 | ||
|  | 
 | ||
|  | 	/* add odometry */ | ||
|  | 	// general noisemodel for odometry
 | ||
|  | 	SharedDiagonal odometryNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); | ||
|  | 	Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
 | ||
|  | 	// create between factors to represent odometry
 | ||
|  | 	BetweenFactor<Pose2> odom12(i1, i2, odometry, odometryNoise); | ||
|  | 	BetweenFactor<Pose2> odom23(i2, i3, odometry, odometryNoise); | ||
|  | 	graph.add(odom12); // add both to graph
 | ||
|  | 	graph.add(odom23); | ||
|  | 
 | ||
|  | 	/* add measurements */ | ||
|  | 	// general noisemodel for measurements
 | ||
|  | 	SharedDiagonal meas_model = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.2)); | ||
|  | 
 | ||
|  | 	// create the measurement values - indices are (pose id, landmark id)
 | ||
|  | 	Rot2 bearing11 = Rot2::fromDegrees(45), | ||
|  | 		 bearing21 = Rot2::fromDegrees(90), | ||
|  | 		 bearing32 = Rot2::fromDegrees(90); | ||
|  | 	double range11 = sqrt(4+4), | ||
|  | 		   range21 = 2.0, | ||
|  | 		   range32 = 2.0; | ||
|  | 
 | ||
|  | 	// create bearing/range factors
 | ||
|  | 	BearingRangeFactor<Pose2, Point2> meas11(i1, j1, bearing11, range11, meas_model); | ||
|  | 	BearingRangeFactor<Pose2, Point2> meas21(i2, j1, bearing21, range21, meas_model); | ||
|  | 	BearingRangeFactor<Pose2, Point2> meas32(i3, j2, bearing32, range32, meas_model); | ||
|  | 
 | ||
|  | 	// add the factors
 | ||
|  | 	graph.add(meas11); | ||
|  | 	graph.add(meas21); | ||
|  | 	graph.add(meas32); | ||
|  | 
 | ||
|  | 	graph.print("Full Graph"); | ||
|  | 
 | ||
|  | 	// initialize to noisy points
 | ||
|  | 	Values initial; | ||
|  | 	initial.insert(i1, Pose2(0.5, 0.0, 0.2)); | ||
|  | 	initial.insert(i2, Pose2(2.3, 0.1,-0.2)); | ||
|  | 	initial.insert(i3, Pose2(4.1, 0.1, 0.1)); | ||
|  | 	initial.insert(j1, Point2(1.8, 2.1)); | ||
|  | 	initial.insert(j2, Point2(4.1, 1.8)); | ||
|  | 
 | ||
|  | 	initial.print("initial estimate"); | ||
|  | 
 | ||
|  | 	// optimize using Levenberg-Marquardt optimization with an ordering from colamd
 | ||
|  | 
 | ||
|  | 	// first using sequential elimination
 | ||
|  | 	LevenbergMarquardtParams lmParams; | ||
|  | 	lmParams.linearSolverType = LevenbergMarquardtParams::SEQUENTIAL_CHOLESKY; | ||
|  | 	Values resultSequential = LevenbergMarquardtOptimizer(graph, initial, lmParams).optimize(); | ||
|  | 	resultSequential.print("final result (solved with a sequential solver)"); | ||
|  | 
 | ||
|  | 	// then using multifrontal, advanced interface
 | ||
|  | 	// Note that we keep the original optimizer object so we can use the COLAMD
 | ||
|  | 	// ordering it computes.
 | ||
|  | 	LevenbergMarquardtOptimizer optimizer(graph, initial); | ||
|  | 	Values resultMultifrontal = optimizer.optimize(); | ||
|  | 	resultMultifrontal.print("final result (solved with a multifrontal solver)"); | ||
|  | 
 | ||
|  |   // Print marginals covariances for all variables
 | ||
|  | 	Marginals marginals(graph, resultMultifrontal, Marginals::CHOLESKY); | ||
|  |   print(marginals.marginalCovariance(i1), "i1 covariance"); | ||
|  |   print(marginals.marginalCovariance(i2), "i2 covariance"); | ||
|  |   print(marginals.marginalCovariance(i3), "i3 covariance"); | ||
|  |   print(marginals.marginalCovariance(j1), "j1 covariance"); | ||
|  |   print(marginals.marginalCovariance(j2), "j2 covariance"); | ||
|  | 
 | ||
|  | 	return 0; | ||
|  | } | ||
|  | 
 |