| 
									
										
										
										
											2012-06-06 11:25:56 +08:00
										 |  |  | /* ----------------------------------------------------------------------------
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2019-02-11 22:39:48 +08:00
										 |  |  |  * GTSAM Copyright 2010, Georgia Tech Research Corporation, | 
					
						
							| 
									
										
										
										
											2012-06-06 11:25:56 +08:00
										 |  |  |  * Atlanta, Georgia 30332-0415 | 
					
						
							|  |  |  |  * All Rights Reserved | 
					
						
							|  |  |  |  * Authors: Frank Dellaert, et al. (see THANKS for the full author list) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * See LICENSE for the license information | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |  * -------------------------------------------------------------------------- */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /**
 | 
					
						
							| 
									
										
										
										
											2020-07-12 01:16:08 +08:00
										 |  |  |  * @file  DiscreteBayesNet_FG.cpp | 
					
						
							| 
									
										
										
										
											2012-10-02 22:40:07 +08:00
										 |  |  |  * @brief   Discrete Bayes Net example using Factor Graphs | 
					
						
							|  |  |  |  * @author  Abhijit | 
					
						
							|  |  |  |  * @date  Jun 4, 2012 | 
					
						
							| 
									
										
										
										
											2012-06-06 11:25:56 +08:00
										 |  |  |  * | 
					
						
							| 
									
										
										
										
											2020-07-10 08:46:12 +08:00
										 |  |  |  * We use the famous Rain/Cloudy/Sprinkler Example of [Russell & Norvig, 2009, | 
					
						
							|  |  |  |  * p529] You may be familiar with other graphical model packages like BNT | 
					
						
							|  |  |  |  * (available at http://bnt.googlecode.com/svn/trunk/docs/usage.html) where this
 | 
					
						
							|  |  |  |  * is used as an example. The following demo is same as that in the above link, | 
					
						
							|  |  |  |  * except that everything is using GTSAM. | 
					
						
							| 
									
										
										
										
											2012-06-06 11:25:56 +08:00
										 |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <gtsam/discrete/DiscreteFactorGraph.h>
 | 
					
						
							| 
									
										
										
										
											2020-07-10 08:46:12 +08:00
										 |  |  | #include <gtsam/discrete/DiscreteMarginals.h>
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-06-06 11:25:56 +08:00
										 |  |  | #include <iomanip>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | using namespace std; | 
					
						
							|  |  |  | using namespace gtsam; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int main(int argc, char **argv) { | 
					
						
							| 
									
										
										
										
											2020-07-10 08:46:12 +08:00
										 |  |  |   // Define keys and a print function
 | 
					
						
							|  |  |  |   Key C(1), S(2), R(3), W(4); | 
					
						
							|  |  |  |   auto print = [=](DiscreteFactor::sharedValues values) { | 
					
						
							|  |  |  |     cout << boolalpha << "Cloudy = " << static_cast<bool>((*values)[C]) | 
					
						
							|  |  |  |          << "  Sprinkler = " << static_cast<bool>((*values)[S]) | 
					
						
							|  |  |  |          << "  Rain = " << boolalpha << static_cast<bool>((*values)[R]) | 
					
						
							|  |  |  |          << "  WetGrass = " << static_cast<bool>((*values)[W]) << endl; | 
					
						
							|  |  |  |   }; | 
					
						
							| 
									
										
										
										
											2012-06-06 11:25:56 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2012-10-02 22:40:07 +08:00
										 |  |  |   // We assume binary state variables
 | 
					
						
							|  |  |  |   // we have 0 == "False" and 1 == "True"
 | 
					
						
							|  |  |  |   const size_t nrStates = 2; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // define variables
 | 
					
						
							| 
									
										
										
										
											2020-07-10 08:46:12 +08:00
										 |  |  |   DiscreteKey Cloudy(C, nrStates), Sprinkler(S, nrStates), Rain(R, nrStates), | 
					
						
							|  |  |  |       WetGrass(W, nrStates); | 
					
						
							| 
									
										
										
										
											2012-10-02 22:40:07 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   // create Factor Graph of the bayes net
 | 
					
						
							|  |  |  |   DiscreteFactorGraph graph; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // add factors
 | 
					
						
							| 
									
										
										
										
											2020-07-10 08:46:12 +08:00
										 |  |  |   graph.add(Cloudy, "0.5 0.5");                      // P(Cloudy)
 | 
					
						
							|  |  |  |   graph.add(Cloudy & Sprinkler, "0.5 0.5 0.9 0.1");  // P(Sprinkler | Cloudy)
 | 
					
						
							|  |  |  |   graph.add(Cloudy & Rain, "0.8 0.2 0.2 0.8");       // P(Rain | Cloudy)
 | 
					
						
							| 
									
										
										
										
											2012-10-02 22:40:07 +08:00
										 |  |  |   graph.add(Sprinkler & Rain & WetGrass, | 
					
						
							| 
									
										
										
										
											2020-07-10 08:46:12 +08:00
										 |  |  |             "1 0 0.1 0.9 0.1 0.9 0.001 0.99");  // P(WetGrass | Sprinkler, Rain)
 | 
					
						
							| 
									
										
										
										
											2012-10-02 22:40:07 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-07-10 08:46:12 +08:00
										 |  |  |   // Alternatively we can also create a DiscreteBayesNet, add
 | 
					
						
							|  |  |  |   // DiscreteConditional factors and create a FactorGraph from it. (See
 | 
					
						
							|  |  |  |   // testDiscreteBayesNet.cpp)
 | 
					
						
							| 
									
										
										
										
											2012-10-02 22:40:07 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |   // Since this is a relatively small distribution, we can as well print
 | 
					
						
							|  |  |  |   // the whole distribution..
 | 
					
						
							|  |  |  |   cout << "Distribution of Example: " << endl; | 
					
						
							|  |  |  |   cout << setw(11) << "Cloudy(C)" << setw(14) << "Sprinkler(S)" << setw(10) | 
					
						
							| 
									
										
										
										
											2020-07-10 08:46:12 +08:00
										 |  |  |        << "Rain(R)" << setw(14) << "WetGrass(W)" << setw(15) << "P(C,S,R,W)" | 
					
						
							|  |  |  |        << endl; | 
					
						
							| 
									
										
										
										
											2012-10-02 22:40:07 +08:00
										 |  |  |   for (size_t a = 0; a < nrStates; a++) | 
					
						
							|  |  |  |     for (size_t m = 0; m < nrStates; m++) | 
					
						
							|  |  |  |       for (size_t h = 0; h < nrStates; h++) | 
					
						
							|  |  |  |         for (size_t c = 0; c < nrStates; c++) { | 
					
						
							|  |  |  |           DiscreteFactor::Values values; | 
					
						
							| 
									
										
										
										
											2020-07-10 08:46:12 +08:00
										 |  |  |           values[C] = c; | 
					
						
							|  |  |  |           values[S] = h; | 
					
						
							|  |  |  |           values[R] = m; | 
					
						
							|  |  |  |           values[W] = a; | 
					
						
							| 
									
										
										
										
											2012-10-02 22:40:07 +08:00
										 |  |  |           double prodPot = graph(values); | 
					
						
							| 
									
										
										
										
											2020-07-10 08:46:12 +08:00
										 |  |  |           cout << setw(8) << static_cast<bool>(c) << setw(14) | 
					
						
							|  |  |  |                << static_cast<bool>(h) << setw(12) << static_cast<bool>(m) | 
					
						
							|  |  |  |                << setw(13) << static_cast<bool>(a) << setw(16) << prodPot | 
					
						
							|  |  |  |                << endl; | 
					
						
							| 
									
										
										
										
											2012-10-02 22:40:07 +08:00
										 |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // "Most Probable Explanation", i.e., configuration with largest value
 | 
					
						
							| 
									
										
										
										
											2020-07-10 08:46:12 +08:00
										 |  |  |   DiscreteFactor::sharedValues mpe = graph.eliminateSequential()->optimize(); | 
					
						
							|  |  |  |   cout << "\nMost Probable Explanation (MPE):" << endl; | 
					
						
							|  |  |  |   print(mpe); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // "Inference" We show an inference query like: probability that the Sprinkler
 | 
					
						
							|  |  |  |   // was on; given that the grass is wet i.e. P( S | C=0) = ?
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // add evidence that it is not Cloudy
 | 
					
						
							|  |  |  |   graph.add(Cloudy, "1 0"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // solve again, now with evidence
 | 
					
						
							|  |  |  |   DiscreteBayesNet::shared_ptr chordal = graph.eliminateSequential(); | 
					
						
							|  |  |  |   DiscreteFactor::sharedValues mpe_with_evidence = chordal->optimize(); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   cout << "\nMPE given C=0:" << endl; | 
					
						
							|  |  |  |   print(mpe_with_evidence); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // we can also calculate arbitrary marginals:
 | 
					
						
							|  |  |  |   DiscreteMarginals marginals(graph); | 
					
						
							|  |  |  |   cout << "\nP(S=1|C=0):" << marginals.marginalProbabilities(Sprinkler)[1] | 
					
						
							|  |  |  |        << endl; | 
					
						
							|  |  |  |   cout << "\nP(R=0|C=0):" << marginals.marginalProbabilities(Rain)[0] << endl; | 
					
						
							|  |  |  |   cout << "\nP(W=1|C=0):" << marginals.marginalProbabilities(WetGrass)[1] | 
					
						
							|  |  |  |        << endl; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   // We can also sample from it
 | 
					
						
							|  |  |  |   cout << "\n10 samples:" << endl; | 
					
						
							|  |  |  |   for (size_t i = 0; i < 10; i++) { | 
					
						
							|  |  |  |     DiscreteFactor::sharedValues sample = chordal->sample(); | 
					
						
							|  |  |  |     print(sample); | 
					
						
							|  |  |  |   } | 
					
						
							| 
									
										
										
										
											2012-10-02 22:40:07 +08:00
										 |  |  |   return 0; | 
					
						
							| 
									
										
										
										
											2012-06-06 11:25:56 +08:00
										 |  |  | } |